

US Army Corps
of Engineers ®
Portland District

The Dalles Fish Water Units 1 & 2

The Dalles Fish Water Turbines Phase 1A Report

Draft Final Report

Prepared By:
US Army Corps of Engineers
Portland District

May 2018

Table of Contents

1	INTRODUCTION.....	7
1.1	PURPOSE.....	7
1.2	PRODUCT DEVELOPMENT TEAM	8
1.3	DESIGN GUIDANCE.....	9
1.4	SCHEDULE	9
1.5	BACKGROUND.....	9
1.6	UPRATING CONSIDERATIONS.....	12
1.7	BIOLOGICAL AND CONSTRUCTION CONSIDERATIONS	12
2	EXISTING CONDITIONS	12
2.1	FISH PASSAGE AND ENDANGERED SPECIES ACT SECTION 7(A)(2) CONSULTATION.....	12
2.2	FISH LADDER.....	13
2.2.1	Fish Passage	13
2.2.2	Fish Ladder Existing Conditions	13
2.2.3	Adult Fisheries Criteria.....	15
2.3	HYDRAULICS	16
2.3.1	River Flows (Summary Hydrograph)	16
2.3.2	Total Head on the Fish Units.....	16
2.4	GENERATOR.....	17
2.4.1	Stator End-Winding Inspection.....	17
2.4.2	Slip Ring Brush Assembly	19
2.5	EXCITATION SYSTEM	21
2.6	TURBINE	22
2.6.1	Water Passageway and Turbine Pit	23
2.6.2	turbine runner	23
2.6.3	Head Cover.....	24
2.6.4	Turbine Shaft	25
2.6.5	Turbine Guide Bearing.....	25
2.6.6	Wicket Gates.....	25
2.6.7	Wicket Gate Operating Ring and Mechanism.....	25
2.6.8	Wicket Gate Servomotor	26
2.6.9	Wicket Gate Bushings	26
2.6.10	Generator Shaft	26
2.6.11	Generator Guide Bearings	27
2.6.12	Thrust/Upper Guide Bearing Assembly	27
2.6.13	Turbine Performance of Existing Units	28
2.7	ANCILLARY EQUIPMENT	29
2.7.1	Governor.....	29
2.7.2	Thrust/Upper Guide Bearing Oil Coolers	29
2.7.3	Lower Guide Bearing Oil Cooler.....	30
2.7.4	Turbine Guide Bearing	30
2.7.5	Surface Air Coolers.....	30
2.7.6	Water and Oil Piping.....	30
2.7.7	Brake and Jack System	30
2.7.8	E-Closure System	31
2.8	OTHER ELECTRICAL COMPONENTS	31
3	STRUCTURAL ENGINEERING	32
3.1	CRITERIA AND CONSTRAINTS	32

3.1.1	Fish Unit Outfall into AWS	32
4	HYDRAULIC DESIGN.....	33
4.1	LIMITED FISH LADDER MODEL.....	33
4.2	CRITERIA AND CONSTRAINTS	35
5	TURBINE ENGINEERING	36
5.1	TURBINE CRITERIA AND CONSTRAINTS	36
5.1.1	Criteria	36
5.1.2	Constraints	37
5.2	TURBINE SUB-ALTERNATIVES.....	38
5.2.1	Alternatives Analysis.....	38
5.2.2	Alternative Analysis Assumptions.....	38
5.2.3	Turbine Sub-Alternatives That were Considered.....	38
6	GENERATOR ENGINEERING	40
6.1	ELECTRICAL TESTING	40
6.1.1	General discussion	40
6.1.2	Visual/Physical Inspection (rotor and stator)	41
6.1.3	IR/PI Testing (rotor and stator).....	41
6.1.4	DC Ramp Over Potential Testing (stator only).....	44
6.1.5	Partial Discharge Analyzer (PDA) Testing.....	44
6.1.6	Ozone Monitoring.....	48
6.1.7	Criteria	49
6.1.8	Constraints	49
6.2	GENERATOR ALTERNATIVES.....	49
6.2.1	Alternative G1 – Do Nothing.....	50
6.2.2	Description of Work to be Performed	50
6.2.3	Performance of Alternative Against Criteria.....	50
6.2.4	Cost Estimate for Alternative.....	50
6.2.5	Alternative G2 – Overhaul	50
6.2.6	Description of Work to be Performed	50
6.2.7	Performance of Alternative Against Criteria.....	51
6.2.8	Cost Estimate for Alternative.....	51
6.2.9	Alternative G3 – Rewind of Fish Unit 2, Overhaul Fish Unit 1	51
6.2.10	Description of Work to be Performed	51
6.2.11	Performance of Alternative Against Criteria.....	51
6.2.12	Cost Estimate for Alternative.....	51
6.2.13	Alternative G4 – Rewind Both Units	51
6.2.14	Description of Work to be Performed	51
6.2.15	Performance of Alternative Against Criteria.....	52
6.2.16	Cost Estimate for Alternative.....	52
6.2.17	Alternative G5 – Rewind and Replace Core for Both Units.....	52
6.2.18	Description of Work to be Performed	52
6.2.19	Performance of Alternative Against Criteria.....	52
6.2.20	Cost Estimate for Alternative.....	52
7	EXCITATION SYSTEM ENGINEERING	53
7.1	GENERAL DISCUSSION.....	53
7.1.1	Existing Excitation System	53
7.1.2	Retrofit Existing Excitation System	54
7.1.3	Digital Static Excitation System.....	54

7.1.4	Brushless Excitation System.....	54
7.2	EXCITATION SYSTEM CRITERIA AND CONSTRAINTS.....	57
7.2.1	criteria.....	57
7.2.2	constraints	57
7.3	EXCITATION SYSTEM ALTERNATIVES.....	57
7.3.1	alternatives E1 – Base Case (Do Nothing).....	57
7.3.2	Performance of Alternative Against Criteria.....	57
7.3.3	Cost Estimate for Alternative.....	57
7.3.4	alternative E2 – Replace With New Exciter Control.....	57
7.3.5	Performance of Alternative Against Criteria.....	57
7.3.6	Cost Estimate for Alternative.....	57
7.3.7	alternative E3 – Replace with New Static Excitation System4.....	57
7.3.8	Cost Estimate for Alternative.....	58
7.3.9	alternative E4 – replace with brushless excitation system.....	58
7.3.10	Cost Estimate for Alternative.....	58
7.4	SUMMARY OF FISH ATTRACTION WATER UNIT EXCITER ALTERNATIVE EVALUATIONS.....	58
8	COMBINED TURBINE, GENERATOR AND EXCITER ALTERNATIVES	59
8.1	REMOVAL OF SOME SUB-ALTERNATIVES.....	59
8.1.1	General	59
8.1.2	Removal of the ‘Operate to Failure’ Sub-alternative.....	59
8.1.3	Removal of the ‘Generator Limited Rehabilitation’ Sub-alternative	59
8.1.4	Removal of the ‘Conversion to Fixed Blade Operation’ Sub-alternative	59
8.1.5	Removal of the ‘Rehabilitation of Existing Units’ Sub-alternative	60
8.2	HIGH LEVEL ALTERNATIVES	60
8.2.1	High Level AltA, Replace Turbine with Kaplan Runner, Same Output as Existing.....	60
8.2.2	High Level Alt B, Replace Turbine with Propeller Runner, Same Rated Output as Existing.....	61
8.2.3	High Level Alt C, Replace Turbine with Oil-Filled Kaplan Runner, Uprate Unit to Shaft Limit	61
8.2.4	High Level Alt D, Replace Turbine with Oil-Free Kaplan Runner, Uprate Unit to Shaft Limit	62
8.2.5	High Level Alt E, Replace Turbine with Propeller Runner, Uprate Unit to Shaft Limit.....	63
8.2.6	High Level Alt F, Replace Turbine with Oil-Filled Kaplan Runner, Uprate Unit Above Shaft Limit.....	63
8.2.7	High Level Alt G, Replace Turbine with Oil-Free Kaplan Runner, Uprate Unit Above Shaft Limit	64
8.2.8	High Level Alt H, Replace Turbine with Propeller Runner, Uprate Unit Above Shaft Limit	65
8.3	ALTERNATIVE MATRIX	66
9	ALTERNATIVE EVALUATION.....	67
9.1	EXISTING UNIT DISCHARGE AND PROSPECTIVE NEW UNIT DISCHARGE	67
9.2	REMOVAL OF SOME HIGH LEVEL ALTERNATIVES.....	68
9.2.1	Replace with an Oil-Free Kaplan runner	68
9.2.2	Replace with Fixed Blade Propeller Runner Uprated to Shaft Limit/Uprated Above Shaft Limit	68
9.2.3	Replace with a Kaplan Runner uprated above shaft limit.....	70
9.2.4	Replace with Kaplan Runner with the same Rated output as existing Units	70
9.2.5	Replace with a Fixed Blade Propeller Runner with the Same Rated Output as Existing Units	70
9.2.6	Replace with a Kaplan turbine with uprate to shaft limit	70
10	RECOMMENDED FIRST ALTERNATIVE AND SECOND ALTERNATIVE	71
10.1	GENERAL.....	71
10.2	THE RECOMMENDED ALTERNATIVE, ALT C, REPLACE TURBINE WITH KAPLAN RUNNER, UPRATED TO SHAFT LIMIT	71
10.3	SCOPE OF PHASE 1 WORK FOR THE RECOMMENDED ALTERNATIVE.....	73
DESIGN DOCUMENTATION REPORT		73
FISH FRIENDLY		73

PLANS	73
SPECIFICATIONS.....	73
INCLUDED PLANT AND EQUIPMENT	73
10.4 THE NEXT BEST ALTERNATIVE, ALT B, REPLACE TURBINE WITH PROPELLER RUNNER, SAME RATED OUTPUT AS EXISTING.	84
10.5 SCOPE OF PHASE 1 WORK FOR THE SECOND RECOMMENDED ALTERNATIVE.....	85
DESIGN DOCUMENTATION REPORT	85
FISH FRIENDLY	85
PLANS	85
SPECIFICATIONS.....	85
INCLUDED PLANT AND EQUIPMENT	86
11 COST ENGINEERING.....	89
11.1 COST ENGINEERING, FISH UNITS.....	89
11.2 CONTINGENCY/ RISK ANALYSIS.....	89
11.3 OVERTIME.....	89
11.4 BASIS OF ESTIMATE	89
11.4.1 Recommended Alternative at Phase 1A	89
11.4.2 Next Best Alternative at Phase 1A	89
11.5 ACQUISITION STRATEGY	89
11.6 OPERATIONS DURING CONSTRUCTION	90
11.7 CONSTRUCTION SCHEDULE.....	90
11.8 LIFECYCLE ANALYSIS.....	90

APPENDICES

A Hydraulic Calculations	78
B Turbine and Generator Section Drawings	98
C High Level Alternative Costs	101
D Turbine and Generator Condition Assessment Reports	110
E Miscellaneous Pertinent Mechanical Systems	122
F Turbine and Generator Shaft Stress Calculations	130
G Fish Water Turbine Project Data	134
H Exciter Brushes and Brush Holders	137
I Cost Analysis for Preferred and Next Best Alternatives	144

Table of Tables

Table 1. Participants and Roles.....	8
Table 2. Deliverables Schedule	9
Table 3. Overall Schedule	9
Table 4. The Dalles East Fish Ladder Entrances	13
Table 5. Summary Statistics of the Recorded versus Estimated Fish Unit Discharge.....	34
Table 6. Recommended Minimum Insulation Resistance Values at 40C (Values in MOhms)	42
Table 7. Insulation Resistance and Polarization Index (IR/PI) Test Results for Fish Unit 1 Stator	42
Table 8. Insulation Resistance and Polarization Index (IR/PI) Test for Fish Unit 2 Stator.....	43
Table 9. Insulation Resistance and Polarization Index (IR/PI) Test Results for Fish Unit 1 Rotor.....	43
Table 10. Insulation Resistance and Polarization Index (IR/PI) test Results for Fish Unit 2 Rotor.....	44
Table 12. Categorizes the Magnitude (mV) of PD that is Measured	47
Table 13. Criteria Matrix for Selection of the Replacement for the Fish Water Turbines.....	66
Table 14. Estimated Cost for Recommended Alternative C	76
Table 15. Estimated Cost for the Next Best Alternative B	88

Table of Figures

Figure 1. Generator Nameplate	10
Figure 2. Rewound Nameplate	10
Figure 3: Spillway, Fishways, Powerhouse and Other Structures at The Dalles Dam.....	11
Figure 4: The Dalles Dam South and West Fish Entrances for the East Fish Ladder.....	11
Figure 5: Compare Estimated and Recorded Differences between AWS Head and Project TW	16
Figure 6. Unitrol F System Configuration.....	21
Figure 7. Stainless Steel Overlay on the Blades Suction Side (Underside, Leading Edge.....	22
Figure 8. Paint Still Visible on the Runner Hub	22
Figure 9. Blade Cracks That Have Been Repaired and Are Not Re-Cracking.....	23
Figure 10. Wicket Gates and Stay Vane in Good Condition.....	24
Figure 11. Discharge Ring SS Repair Shown below a Blade with a Cavitation Fin	24
Figure 12. Add'l Photo Showing Wicket Gates & Stay Vane with a Corrosion Patina	24
Figure 13. Unit 2 Disassembled Showing the Combination Generator Thrust Bearing/Upper Guide Bearing.....	26
Figure 14. Lower Generator Guide Bearing	27
Figure 15. The Turbine Pit Showing the Two Wicket Gate Servos and the Wicket Gate Linkage.....	28
Figure 16. Existing Turbine Performance, Turbine Horsepower vs. Turbine Efficiency.....	28
Figure 17. Existing Performance, Turbine Discharge vs. Generator Output in MW	29
Figure 18. American Governor Digital Governors Installed circa 2012.....	29
Figure 19. Comparison of Recorded and Estimated Fish Unit Discharges.....	34
Figure 20. PD Trend Analysis, Fish Unit 1	45
Figure 21. PD Trend Analysis Fish Unit 2	46
Figure 22. Ozone Data	48
Figure 23. Chart Showing the Existing and the Desired Turbine Single Unit Discharge, CFS.....	67
Figure 24. Power vs. Efficiency for The Turbine Propeller Unit Uprated to Shaft Limit	69
Figure 25. Power vs. Discharge for Turbine Propeller Unit Uprated to Shaft Limit.....	69
Figure 26. Chart Showing the Performance, Horsepower and Efficiency, of the New Units.....	72
Figure 27. Chart Showing the performance, Megawatts and Discharge of New Units	72
Figure 28. Expected Propeller Turbine Performance, Horsepower vs. Efficiency	84
Figure 29. Expected Propeller Turbine Performance, Discharge vs. Generator Output.....	85

1 INTRODUCTION

1.1 PURPOSE

The purpose of this Phase 1A Report is to provide alternatives considered and identify recommended work to improve reliability of the Fish Water units and the overall fish unit system. These units are located adjacent to main Unit 1 at the powerhouse and are the primary source of attraction water for the Oregon shore fish ladder. This report provides documentation for the development of all practical alternatives for the rehabilitation of Fish Water Units 1 and 2, evaluation of those alternatives, and the rationale for the selection of the Recommended Alternative. This report will be provided to the Capital Work Group (CWG) along with a Decision Support Document (DSD) package for approval of the Recommended Plan and agreement to move this project forward for the completion of Plans and Specifications (Phase 1). Upon completion of the Plans and Specifications, a DSD package will be presented to the CWG for the completion of a construction contract for implementation of the Recommended Plan (Phase 2).

This report provides pertinent information, evaluations, and discussions that support the recommendation for how to proceed with Fish Water Units 1 and 2. First, a brief Project Description outlines the need for Units 1 and 2. Second, General Considerations are discussed to explain the role and importance of units 1 and 2 within the fish guidance system and identifies assumptions. Third, the Existing Condition of the major equipment is discussed. Fourth, Criteria and Constraints outlines the scope of the project and identifies the criteria by which the alternatives are to be compared and the constraints on the project. Fifth, Design Alternatives are identified and explained in detail. Sixth, a Cost Estimate is presented for each alternative. Seventh, the alternatives are evaluated within the Alternative Evaluation by considering the existing condition of the major equipment, comparing each alternative to the criteria, and comparing each alternative to the other alternatives. Finally, a recommendation is made regarding which alternative the PDT believes to be the best alternative.

The primary purpose of this report is to identify recommended work to improve reliability of the Fish Water units and ladder system. The majority of fish that pass The Dalles Dam through the annual cycle utilize this ladder system. The water supply for the ladder system is linked with power generation benefits, however, no economic analysis has been conducted for power or quantitative fish passage benefits since the primary use for the Fish Water turbines is water supply for the ladder and optimal operating criteria is already defined. It is imperative for the system to be reliable to meet the attraction water requirements as stated in the USACE, Northwest Division, 2018 Fish Passage Plan and the National Marine Fisheries Service (July 2011), Anadromous Salmonid Passage Facility Design in accordance with the NOAA Fisheries, Federal Columbia River Power System, 2008 Biological Opinion (BiOp) and the 2010 and 2014 Supplemental BiOps. Presently, both fish units must be in operation to maintain full criteria entrance conditions.

The Dalles Auxiliary Water Supply (AWS) Backup system is under construction and due for commissioning in late April 2018. The backup system will deliver at least 1400 cfs to The Dalles East Fishladder system in the event both fish units fail. The AWS Backup system is not designed to work in conjunction with the current Fish Water units. Should one of the Fish Water units fail, the discharge from the AWS backup system cannot be added to single unit flow to alleviate the loss of the fish unit.

1.2 PRODUCT DEVELOPMENT TEAM

Table 1 shows the participants.

Table 1. Participants and Roles

Name	Title	Role
Bui, Tam (HDC-E)	Electrical Engineer	Generators & Exciters
Chase, Luke (BPA)		BPA Project Representative
Colesar, Michael (OD-D)	Chief of Tech	Project Point of Contact
Cordie, Bob (OD-D)	Fishery Biologist	Fish Passage & Biology
Andes, Carolina (EC-CC)	Electrical Engineer	Construction Constraints & Cost Engineering
Deatherage, Drew (BPA)	Economist	BPA Representative
Demeaux, Sharon (HDC-M)	Structural Engineer	Structural Design
Eppard, Mathew (PM-E)	Chief Fish Passage Section	Fish Passage
Gray, Amber (RM-F)	Accountant	Expense & Capital Asset Evaluation
Hanson, Matt (EC-DS)	Chief of Structural Design Section	Structural Reviewer
Jones, Jackie (EC-TB)	Budget Analyst	Labor Codes, PR&Cs
Rerecich, Jon (PM-E)	Fish Biologist	Fish Passage & Biology
Salber, Frank (OD-D)	Mechanical Engineer	Project Mechanical Design
Schaffer, Tessa (EC-DG)	Civil Engineer	Evaluation of hazardous waste, lead, asbestos, etc.
Schlenker, Stephen (EC-HD)	Hydraulic Engineer	Hydraulic modeling of fish ladder, reservoir regulation, and water availability
Seacat, Damion (PM-PD)	Program Analyst	Labor Codes, PR&Cs
Sipe, Steve (EC-DM)	Mechanical Engineer	Mechanical Reviewer
Schroeder, James (EC-DE)	Technical Lead	Day-to-day execution of product & coordination of technical disciplines.
Bluhm, Eric (PM-FP)	Project Manager	Overall responsible for product execution, budget, schedule, & quality
Wages, Ethan (HDC-M)	Mechanical Engineer	Bearing coolers, surface air coolers, Machine Condition Monitoring (MCM), e-closure system
Watson, Daniel (HDC-M)	Mechanical Engineer	Design Lead & Turbines
Weber, Jason (EC-T)	Value Engineering Officer	Value Engineering
Yazdani, Azedah (HDC-C)	Product Coordinator	HDC POC for scope, schedule, budget, and non-technical issues

1.3 DESIGN GUIDANCE

The following design guides and standards have been used in the preparation of this document:

- EM 385-1-1 (2014): Safety and Health Requirements Manual
- EM 1110-2-3006 (1994): Hydroelectric Power Plants – Electrical Design
- EM 1110-2-4205 (1995): Hydroelectric Power Plants – Mechanical Design
- ER 1110-2-1302: Engineering and Design – Civil Works Cost Engineering
- EM 1110-2-1304: Civil Works Construction Cost Index System

1.4 SCHEDULE

The project deliverables and the overall anticipated schedule are listed here in Table 2 in Table 3.

Table 2. Deliverables Schedule

Deliverable:	Description:	Date:
10% Package	Existing Conditions and Scoping Report	April 2017
30% Package	Criteria and Constraint Report	June 2017
60% Package	Alternative Evaluation Report	October 2017
90% Package	Draft Final Agency Technical Review	April 2018
100% Package	Draft Final Report	May 2018

Table 3. Overall Schedule

Deliverable:	Description:	Date:
1A Report	Phase 1A	FY17-FY18
Phase 1 Package	Plans and Specifications	FY18-FY20
Contract Acquisition	Advertise and Award	FY20
Phase 2 - Design	Turbine/Generator Design	FY21
Phase 2 – Manufacturing	Turbine/Generator Fabrication	FY22-FY24
Phase 2 - Construction	Onsite construction and installation	FY22-FY24
Closeout	Completion and Closeout	FY24

1.5 BACKGROUND

The two Fish Water turbines at The Dalles are the primary source of fish attraction water for the South, West and East entrances to the fishway which guide fish to the East fish ladder. The two fish water units at the Dalles Powerplant have vertical axis Kaplan type turbine runners and synchronous salient-pole generators. The runners are 120 inch 6-bladed units operating at a rated net head of 74 feet and rotating at 200 rpm. The design head range for the units is 55 feet to 88 feet. The nameplate turbine output is 18,800 hp (equivalent to 13.74 MW). It should be noted though that although the turbines are rated at 18,800 hp they were designed to be capable of a maximum output of 22,600 hp (which is 115% of generator nameplate at unit powerfactor) These units were placed on line in the late 1950's and have been operating for the last 60 years. The average discharge for two units operating is 5000 cfs.

The generators were manufactured and installed by Westinghouse Electric Corporation and brought on line also in the late 1950's. Each generator was rated at 14,200 kVA, 13,800 volts, 3 phase, 0.95 power factor with 60 degree C temperature rise above 40 degree C ambient. The original generators were capable of continuously operating at 115% of their nameplate rating.

A first spare winding was purchased from National Electric Coil (NEC) for Unit 2 in 1993. It was installed by Tennessee Valley Authority (TVA) in 1997. The winding can operate at Class F temperature. The winding was uprated to 18,500 kVA, 13,800 volts, 3 phase, 60 hertz, 75 degree C temperature rise. A second spare winding was purchased from Westinghouse for Unit 1 in 1997. It was installed by Project personnel in the same year. The winding has the Westinghouse Thermalastic Insulation System which consisted of high density mica tape. The insulation is of class F. The winding was uprated to 18,500 kVA, 13,800 volts, 3 phase, 60 hertz, 75 degree C temperature rise.

The draft tube for the fish water turbine runners empties into The Dalles AWS along the powerhouse tailrace and supplies attraction water for the East fish ladder. With both units operating the fish water can supply a total discharge as much as 5,500 cfs to the East fishladder. Figure 3 shows the location of the fish units with respect to the overall project plan including powerhouse, spillway and fish ladder. Figure 4 shows a more detailed view of the how the fish units tie into the fish ladder.

Figure 1. Generator Nameplate

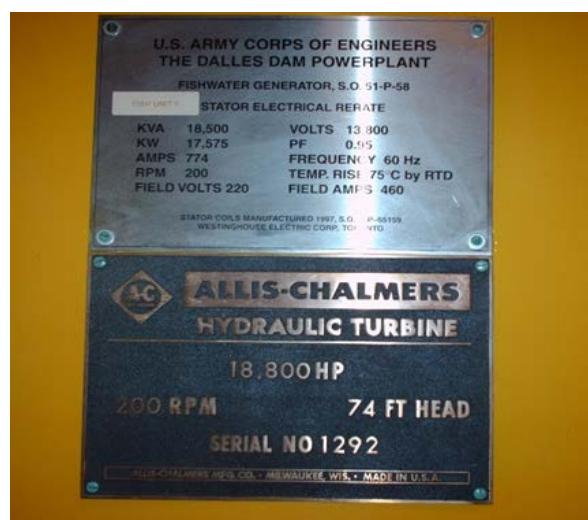


Figure 2. Rewound Nameplate

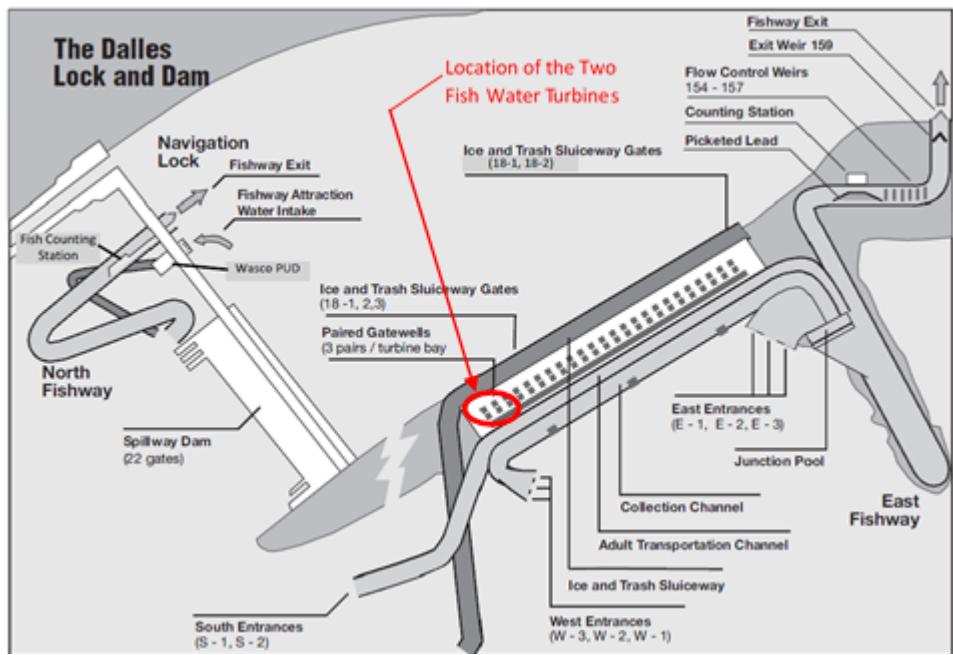


Figure 3: Spillway, Fishways, Powerhouse and Other Structures at The Dalles Dam

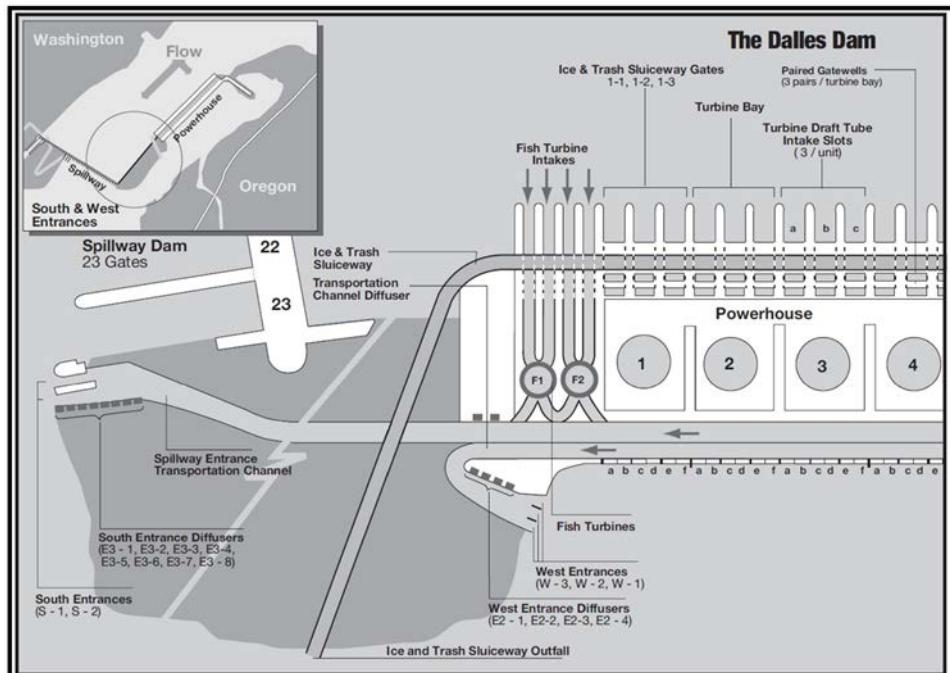


Figure 4: The Dalles Dam South and West Fish Entrances for the East Fish Ladder

1.6 UPRATING CONSIDERATIONS

Generator and turbine uprating is being considered as a means to increase discharge through the units with the goal of providing enough discharge so one unit can meet the minimum fish ladder entrance criteria. This would provide overall system redundancy for fishway operation. Under the existing conditions if one unit is not able to operate due to some system failure, the other unit is not able to provide enough discharge to continuously keep the fish water system in marginal compliance.

1.7 BIOLOGICAL AND CONSTRUCTION CONSIDERATIONS

Schedule: Only one fish unit will be available for fish ladder operation during the construction phase. It is anticipated that the rehabilitation schedule will exceed a typical winter maintenance period. The construction schedule will be sequenced to minimize fish impacts

2 EXISTING CONDITIONS

2.1 FISH PASSAGE AND ENDANGERED SPECIES ACT SECTION 7(A)(2) CONSULTATION

Fish Unit rehab will meet fish passage objectives in accordance with the Endangered Species Act section 7(a)(2) Consultation, National Oceanic and Atmospheric Administration's (NOAA), National Marine Fisheries Service, Endangered Species Act (ESA), analysis and determination for the Federal Columbia River Power System (FCRPS) issued in the NOAA Fisheries' FCRPS 2008 Biological Opinion and the 2010 and 2014 Supplemental Biological Opinions (BiOp). The BiOp recommended a Reasonable and Prudent Alternative (RPA) for the FCRPS, which was then adopted for implementation by the FCRPS Action Agencies that includes the U.S. Army Corps of Engineers and the Bonneville Power Administration.

Since the Action Agencies are operating under court order (see U.S. District Court for the District of Oregon's Order dated March 27th, 2017 and January 8th, 2018) and the Federal Defendants must comply with the Court's remand order by preparing a new biological opinion and following NEPA, the current configuration and operations are the baseline and represent the TDA project configuration and operations criteria for Phase 1A of this project. RPA 55, sub action 6, was intended for fish passage through main units and does not apply to this project (G. Fredricks, NOAA Fisheries, pers. comm., 2017).

The Corps' Northwestern Division develops a strict operational plan, known as the Fish Passage Plan (FPP), which is used when operating TDA to maintain acceptable conditions for upstream and downstream migrating fish. The Fish Passage Plan (FPP) implements the NOAA Fisheries Biological Opinion and is a living document that is updated annually through the regional Fish Passage Operations and Maintenance (FPOM) technical work group. FPP requirements include seasonal operation, turbine unit operations, Bonneville Power Administration (BPA) power requirements, spillway operations, scheduled maintenance, unplanned outages, and others. All of these factors play a role in the operation of TDA in consideration of juvenile and adult fish migration. These factors are not variables within the context of this study and are assumed to be a part of the project operation. The current Fish Passage Plan is the approved method of operation of TDA.

Detailed descriptions of TDA operations criteria for adult and juvenile fish can be found at the following link: <http://pweb.crohms.org/tmt/documents/fpp/>

All work and operations associated with this project will comply with the current Fish Passage Plan requirements unless specifically coordinated through the Fish Passage Operations and Maintenance (FPOM) regional work group. All supporting field studies will be coordinated through the Fish Facility Design Review Work Group (FFDRWG) and the Northwestern Division Anadromous Fish Evaluation Program Studies Review Work Group (SRWG). Members include representatives from BPA, USACE, NOAA, USFWS, state fisheries managers from WA, OR, and ID, as well as the treaty tribes: Yakama Nation, Confederated Tribes of the Umatilla Indian Reservation, Nez Perce, and Warm Springs.

2.2 FISH LADDER

2.2.1 FISH PASSAGE

Four species of Pacific salmon: Chinook salmon (*Oncorhynchus tshawytscha*), steelhead trout (*O. mykiss*), coho salmon (*O. kisutch*), sockeye salmon (*O. nerka*) and Pacific lamprey (*Entosphenus tridentatus*) annually migrate past TDA. Downstream migrants, including yearling and subyearling Chinook salmon, steelhead, sockeye salmon, and coho salmon peak passage periods at TDA are from mid-April through early June. Subyearling fall Chinook salmon outmigrants typical peak passage period at the dam are from mid-June through August. Adult upstream migration occurs throughout the year, although passage during the winter months is relatively light. The adult and juvenile fish passage season is from March 1 through November 30, with a winter maintenance period from December 1 through February 28.

2.2.2 FISH LADDER EXISTING CONDITIONS

There are two adult fish ladder systems at The Dalles: the East Fish ladder and the North Fish ladder (See Figure 3). The East fish ladder abuts the south end of the spillway and both ends of the powerhouse; the North fish ladder abuts the north side of the spillway. The East fish ladder is the larger fish ladder and collects the majority of the upstream migrant fish. The East fish ladder operates three separate entrance locations supplied by a total AWS discharge up to 5500 cfs; whereas the North fish ladder has one entrance supplied by 800 cfs AWS discharge.

Pertinent data for the three main East fish ladder entrance areas are provided in the USACE draft 2005, "Hydraulic Evaluation of Lower Columbia River Adult Bypass Systems (HELCRABS), John Day Dam South Fish ladder Hydraulic/Operational Evaluation" and the Fish Passage Plan. The average total discharge from each entrance area was computed from 2011, 2014 – 2016 data provided by OPD. The sum total entrance discharge comprises the flows (~ 5000 cfs) from the AWS fish units and the upper ladder flow (109 – 138 cfs) from the forebay exit section.

Table 4. The Dalles East Fish Ladder Entrances

The Dalles East Fishladder Entrances		Number of entrance bays		Entrance Bay Width (ft)	Operating Entrance Head (ft)	Entrance weir submergence (feet)		Ave. Total Discharge (cfs) (2014-2016)
Entrance Name	Location	Total	Normal Usage			Minimum	Typical per Criteria Operation	
South	South of Spillway	2	2	15	1-2 ft	8	8.5 - 9.5 ft	1,990
West	West end of PH	3	2	8.5	1-2 ft	8	9.5 - 10.5 ft	1,190
East	East end of PH	3	2.5	8.5	1-2 ft	8	11 - 13 ft	1,950
Total		8	6.5					5,130

All three entrance areas are connected by separate conveyance channels that join at the junction pool near the East entrance. Once the fish arrive at the junction pool, they ascend the fish ladder, which consists of overflow weirs and orifices that rise in one-foot steps. As the fish move up the lower ladder section with floor diffusers, the flow becomes incrementally lower until the only remaining flow is supplied from the upper ladder. As the fish approach the forebay level, they pass through a counting station and an exit section, before entering into the forebay. The upper ladder flow varies as a function of the ladder head set at the top in the exit section: 1 foot ± 0.1 feet for normal adult salmon passage (109 cfs) and 1.3 feet ± 0.1 feet for shad passage (138 cfs).

The two fish units supply a total of up to 5500 cfs discharge to the AWS conduit for The Dalles East Fish ladder. From the connection from the two turbine draft tubes to the AWS conduit, the AWS conduit extends both west and east to deliver flow to the three entrance locations, junction pool and lower fish ladder. Discharge is incrementally released from the AWS into the fish ladder channels through floor diffusers. Discharge passes from the AWS conduit through gated diffuser ports that lead to diffusion basin beneath the floor diffuser gratings. The diffuser gates are neither modulated or intentionally throttled, but are left either open or closed.

Presently both fish units must be in operation to maintain criteria entrance conditions as specified in the Fish Passage Plan. If a fish unit fails, steps are taken to provide best possible entrance condition by making adjustments to maintain entrance differential. This involves; increasing other unit operation to maximum output, close 1 of 2 south entrance weirs, raise east entrance weirs to 8' depth, then close south and west weirs in 1' increments.

In April 25 2017, the PDT observed a single Fish Unit operation at a relatively high tailwater level (82.0 feet at the West Entrance). (See *TRIP REPORT: The Dalles Dam – Field Trip for East Fish Ladder (EFL) /Fish Unit (FU) Water Surface Levels and other Measurements on April 25 2017* prepared by CENWP-EC-HD in Appendix A). The one FU was operating at 14.8 megawatts with fully open wicket gates and a discharge of 2720 cfs. In the fish ladder, two entrance weirs were open each at the West and East entrance locations, and only one was open at the south entrance. Entrance heads at the three locations varied between 1.0 - 1.6 feet (average 1.27 feet) and weir submergence varied between 8.0 – 8.6 feet (average 8.3 feet). The tailwater level was a relatively high 82.0 feet at the West Entrance. The estimated discharge to minimally meet entrance criteria is 2960 cfs, or 200 - 250 cfs higher than the discharge capacity of a single unit at the same tailwater elevation.

OD-D biologists have noted that a single Fish Unit operation may have become close to meeting entrance criteria at times depending on tailwater elevation and net head variance. However the EC-HD fish ladder model estimates that in order to minimally meet entrance criteria (assuming 1.1 entrance head and 8.1 at two entrance weirs at each location) a FU discharge of about 3200 cfs would be required at a low tailwater (75 feet at the West entrance) and about 2970 cfs at a high tailwater (83.5 at the west entrance).

An auxiliary water system (AWS) backup system is being installed to provide emergency supply of water in the event of a failure of both fish units. Schedule completion of this system is March 2018. The AWS backup system consists of the 10-foot diameter penstock cored through the dam with multiple in-line orifices to dissipate the energy and multiple valves to activate or terminate discharge operations. This system will provide 1,400 - 1600 cfs of water only for the operation of the east entrance. The range in discharge is a function of the net head between the forebay and the water level in the AWS conduit where the final two 7-foot penstocks discharge. The AWS conduit head is a function of tailwater at the East Entrance, entrance gate operations, entrance head, and AWS penstock discharge.

The AWS backup system is designed to be operated only in the event of a dual fish unit outage. In the event of the single unit failure: the remaining single fish unit would be operated instead of the AWS backup system because a single fish unit provides significantly more auxiliary water to the fishladder and does not require full closure of the south and west entrance areas.

2.2.3 ADULT FISHERIES CRITERIA

The adult fish passage criteria¹ for The Dalles fish ladders are the following:

1. Elevation entrance weir crest \geq 8 feet below tailrace level (or entrance submergence \geq 8 feet);
Maintain a minimum tailwater at 70 feet NGVD 29 to remain in entrance weir criteria operating range (regulated by Reservoir Control Center).
2. Head difference across entrances should be between 1 – 2 feet, 1.5 feet optimum;
3. Channel velocities should be between 1.5 - 4 ft/s, 2 ft/s optimum;
4. Ladder head (water depth over ladder weirs) should be 1.0 ft (\pm 0.1 ft). During shad passage season (>5,000 shad/day per at Bonneville Dam count station), ladder head = 1.3 ft \pm 0.1 ft.
5. Diffuser efflux velocities \leq 0.5 ft/s.
6. Remove debris as required to maintain head below 0.5 ft on attraction water (i.e. fish unit) intakes and trash racks at all the ladder exits, with a 0.3 ft maximum head on all picket leads. Debris shall be removed when significant amounts accumulate.

Operationally, criteria bullets items 1, 2, 3 and 4 have the highest priority. Criteria items 1 and 2 pertain to entrance criteria, which depend on the quantity of the AWS discharge. Under normal operations, The Dalles East fish ladder meets entrance criteria at all entrances with a comfortable margin of safety. Due to a hydraulic imbalance built into the system, the East entrance must pass more flow to assure that the other two entrance areas meet criteria as well. This is because the hydraulic gradeline in the junction pool needs to have sufficient differential in elevation with respect to the tailwater levels at the South and west entrances to drive enough flow down the separate channels to the south and west entrances. The east entrance (being adjacent to the junction pool) is effectively a short circuit in comparison, and thus takes a larger volume of flow despite measures in the junction pool to restrict flow to the east entrance.

Channel velocity (item 3) is next in importance and also depends on AWS discharge and tailwater elevation, as well as design configuration and management of the diffusers. Most of channels in The Dalles East meet channel velocity criteria, however the powerhouse collection channel (connecting the junction pool to the West Entrance – see Figure 3) sometimes does run below minimum velocity criteria. The low velocity in the powerhouse collection channel is appears to be primarily caused by an original design constraint, in which the hydraulic gradient is limited between the junction pool and west entrance. Past fish passage studies do not indicate problems with passage through this section of the collection channel. However past experiences at other fishladders such as John Day shows that fish may either delay or leave the system entirely if average channel velocities are allowed to get below about one foot per second.

- The minimum estimated AWS discharge to marginally meet entrance criteria is 3200 cfs
- The minimum estimated AWS discharge to meet reliably entrance criteria is 4320 cfs
- The minimum estimated AWS discharge to meet all criteria is 5000 cfs

A simplified hydraulic model was developed to estimate the minimum AWS discharge required to meet entrance criteria (4320 cfs). The model is documented in *The Dalles East Fish Ladder Ladder Model Memorandum* prepared by CENWP-EC-HD located in Appendix A – Hydraulic Calculations. The model was developed from OD-D fish ladder inspection data collected during 2011, 2014-2016, and April 2017. The 2nd higher level was based on a review of the fish ladder operations over the same period and discussions with the Project Biologist.

¹ References: USACE, Northwest Division (2017), 2017 Fish Passage Plan, National Marine Fish Passage Service (2011), Anadromous Salmonid Passage Facility Design

2.3 HYDRAULICS

2.3.1 RIVER FLOWS (SUMMARY HYDROGRAPH)

The Columbia River at The Dalles Project, TDA, is a run of the river project and conditions are not controlled or set by specific operations or manipulations of the series of dams on the Columbia River. Due to power peaking and biological operational constraints there is significant fluctuation in project discharge and resulting tailwater in any 24 hours. Discharge will typically vary 50 to 60 Kcfs in 24 hours but can vary as much as 100 Kcfs. Flow statistics from USGS Gauge 14105700 – Columbia River at The Dalles are used to represent flow statistics at TDA.

2.3.2 TOTAL HEAD ON THE FISH UNITS

The total head on the TDA fish turbines is the difference between forebay elevation and the energy gradeline elevation (EGL) in the auxiliary water supply (AWS) conduit for the East fish ladder. The EGL in the AWS conduit is in turn a function of the tailwater elevations along the powerhouse channel and added AWS head required to drive the flow through the AWS conduits, diffusors and ultimately out of the fish ladder entrances. The added AWS head is a function of the total fish unit discharge and the number of open diffuser gates and operating entrance gates. The determination of the EGL is further complicated by that fact that there are three different entrance locations, each with different tailwater elevations. The tailwater increases in the upstream direction (east) along the powerhouse channel as a function of main unit discharges. Therefore the 'tailwater' or AWS EGL for the fish units is dependent on Project and fish ladder operations.

Based on typical operations, the AWS EGL is on average about 9 - 12 feet above the Project tailwater elevation. The project tailwater is recorded at USGS Gauge 14105700 – Columbia River at The Dalles, which is typically lower than any of the three entrance tailwater elevations due to backwater effect of the powerhouse operations. The following relationship describes the head difference as a function of total fish unit discharge:

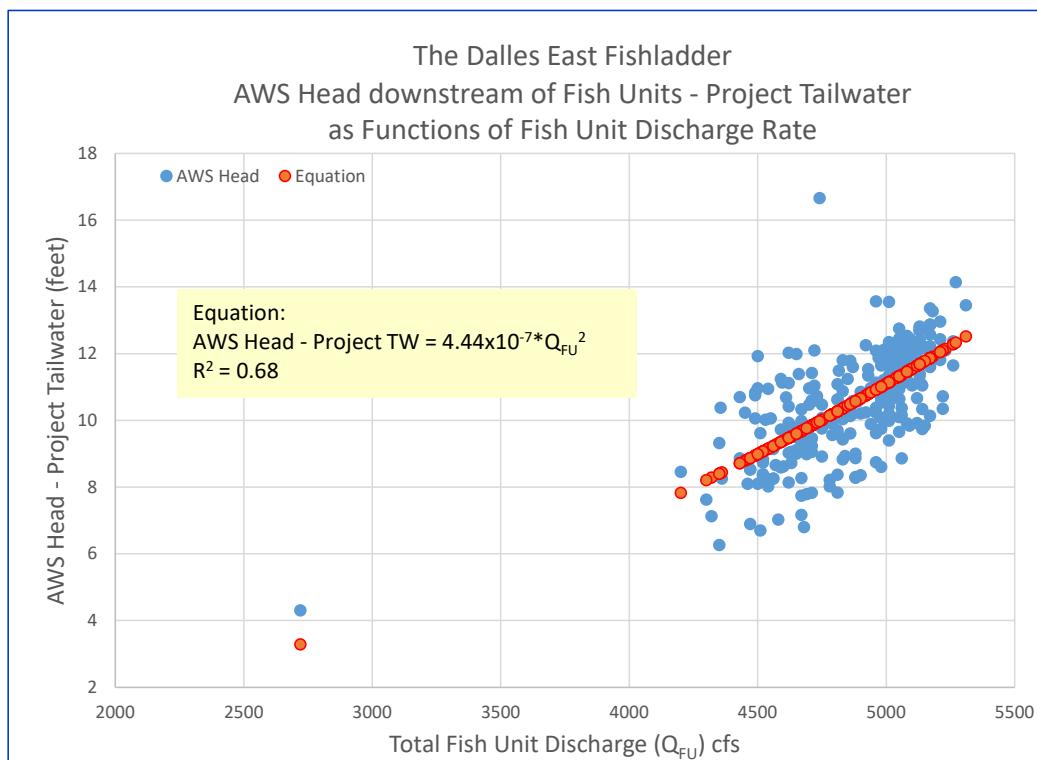
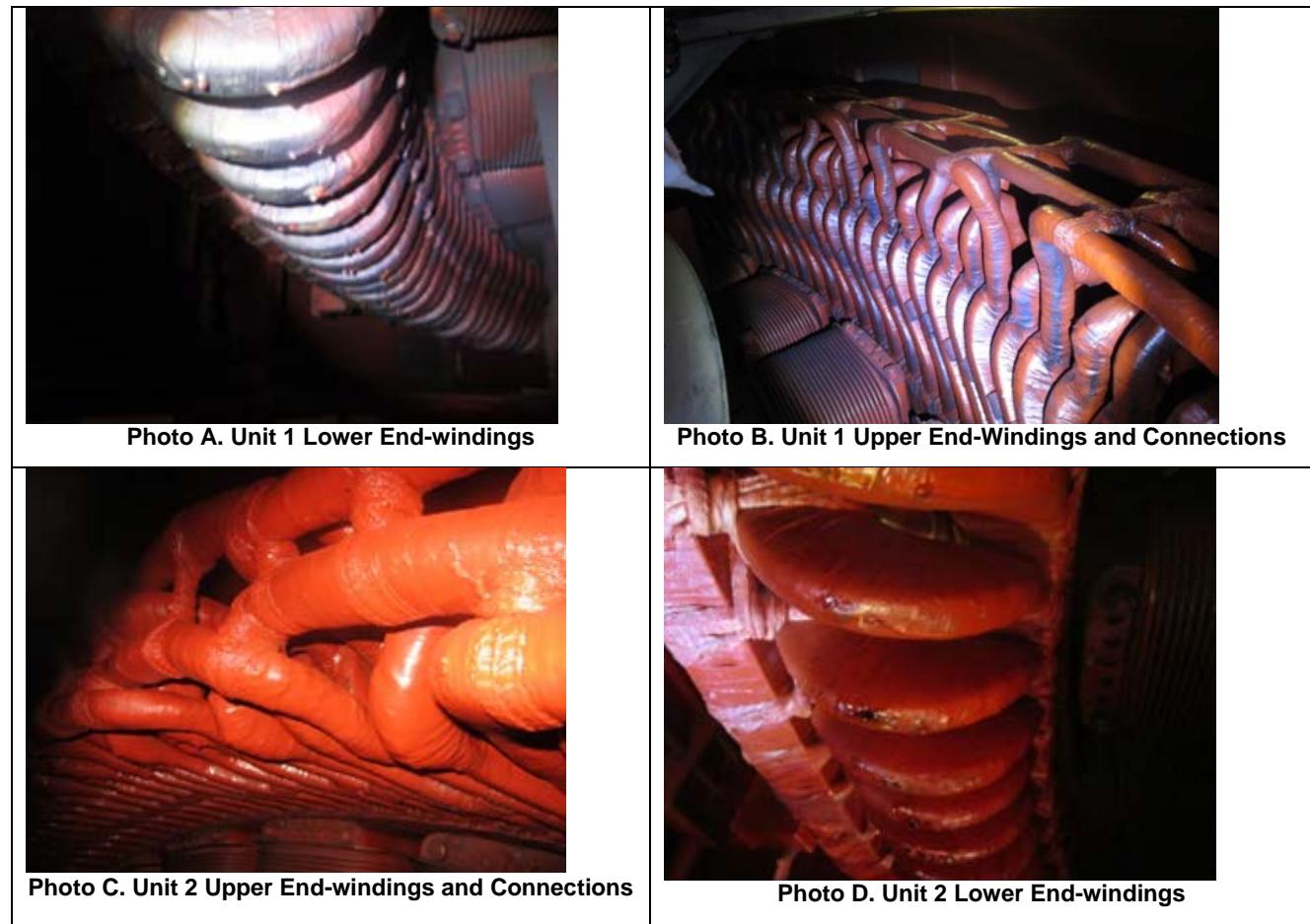




Figure 5: Compare Estimated and Recorded Differences between AWS Head and Project TW

2.4 GENERATOR

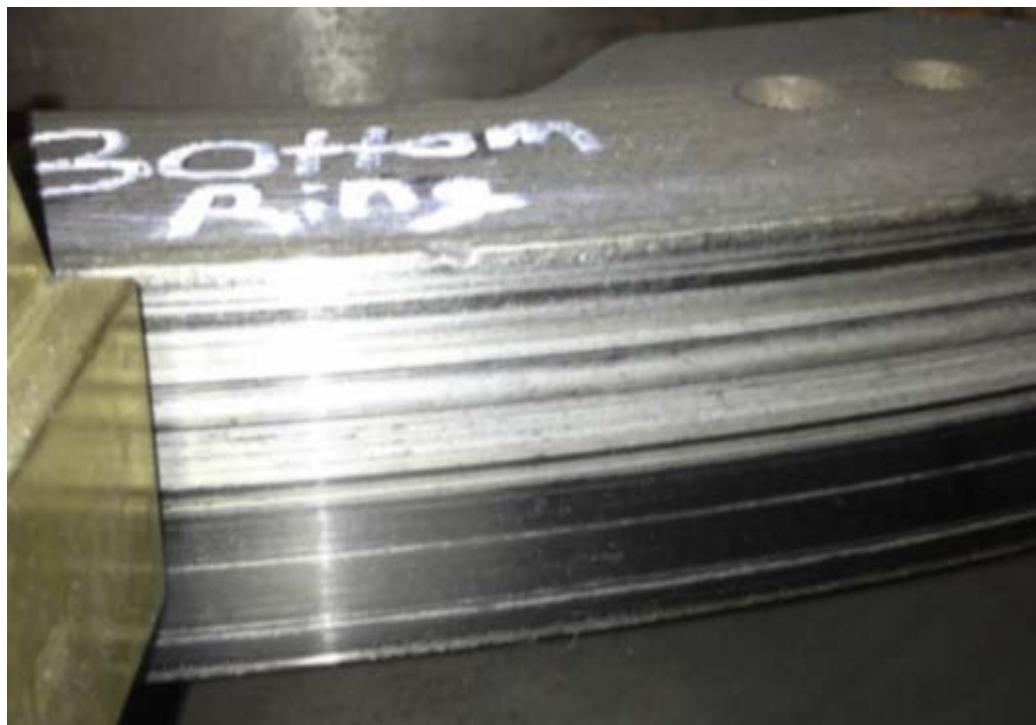
2.4.1 STATOR END-WINDING INSPECTION

The rotors of both units were still in place. Visual inspections of the stator end-windings were therefore limited. According to the Project, the windings have never been inspected or cleaned since they were rewound in 1997. Findings apply only to the areas visibly observed during the rotor-in inspection. Unit 1 end-windings have oil deposit and covered with brake dust. Unit 2 end-windings were clean and dry. No signs of partial discharge activity or discoloration were evidence on both units. No cracking and bulging of the insulation was found. The blocking, lashing and ties appeared to be tight with no signs of movement. Wedges also appeared tight and there were no signs of migration. Overall the windings in both units appear in fair condition for their age. The rotor poles were inspected from above. There were no signs of movement. Inter-pole connections were examined. They appeared to be in good condition. The main and neutral leads were also inspected. No signs of insulation deterioration were observed.

Photo E. Unit 2 Rotor Poles

Photo F. Main and Neutral Leads

Photo G. Oil Found on the bottom of Unit 2 Generator Frame


Oil was seen on the bottom of the generator stator frame. I was not known where the oil came from or how it got here. However it did not appear that oil got on the winding or core. It is recommended that the oil be cleaned. Project has cleaned the oil since then.

2.4.2 SLIP RING BRUSH ASSEMBLY

The Dalles Maintenance staff noticed excessive brush wear for The Dalles Fish Units since at least 2011. Staff engaged The Dalles engineering, HDC, and Helwig, the brush manufacturer, in troubleshooting and developing a solution. Wear issues are still unresolved, as wear is considered excessive for less than two years of operation. The brushes as of the last check in 2015 is approximately one year old.

Photo H. Brush Threading and Uneven Wear

Photo I. Typical Film and Streaking

2.5 EXCITATION SYSTEM

The original rotating excitation systems was replaced with the UNITROL F Series solid state excitation systems by ABB in 2000. While the excitation systems are in satisfactory condition, replacement parts are difficult to locate or are no longer available.

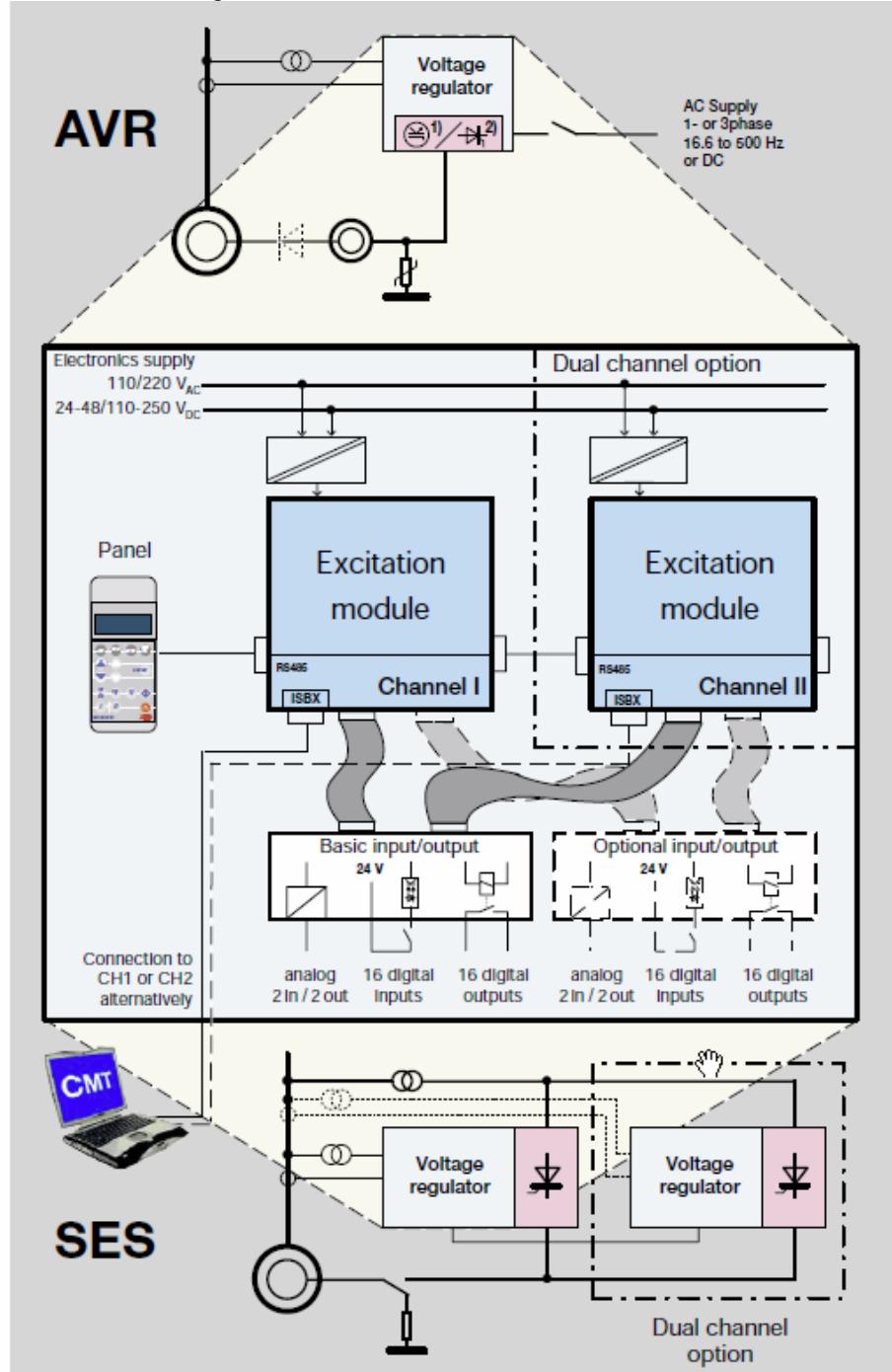


Figure 6. Unitrol F System Configuration

No failures occurred on the excitation system. However, there was a failure on the main Unit 13, which also has UNITROL F model.

2.6 TURBINE

All inspections on the mechanical features of The Dalles fish water units were done visually. No other non-destructive inspections were performed (i.e. penetrant dye, magnetic particle, ultrasonic).

Discussions with project staff revealed that overall the fish water units have historically been very dependable. There have been problems with blade cracks occurring in the leading and trailing edge blade radii to the blade trunnion. In recent years these have been addressed in a more robust fashion which seems to have corrected the cracking problem. There has been no recent crack propagation on any of the fish water turbine runner blades.

There is minimal cavitation damage on the runner surfaces, but it has been addressed and looked in good repair at the time of the 2016 inspection. Cavitation is an ongoing issue that must be addressed during scheduled outages. At this point it looks like this has been the case.

The components inside the runner and oil head cannot be inspected so even though the exterior of the runner is in good shape there is no way to verify that the components inside the runner and oil head are in good functioning order. These Kaplan units are 60 years old so all components inside the runner have 60 years of wear. The risk of a failure will increase with age. It should be pointed out though that in the past when a Kaplan has failed there has always been a way to perform an in-place repair that will allow the runner to continue to function however in most cases without its full Kaplan functionality. In the case of a potential failure, the unit may be unavailable for several months while it is being repaired which may be a major concern since the failed unit will be unwatered and not able to provide attraction water for the fish way. Turbine pit components including the operating ring, two wicket servos, wicket gate linkages, turbine guide bearing and packing box appear to be in good operating order.

Figure 7. Stainless Steel Overlay on the Blades Suction Side (Underside, Leading Edge)

Figure 8. Paint Still Visible on the Runner Hub

Figure 9. Blade Cracks That Have Been Repaired and Are Not Re-Cracking

2.6.1 WATER PASSAGEWAY AND TURBINE PIT

All carbon steel hydraulic surfaces inspected had some buildup of corrosion on the surface intermixed with the original paint system. The corrosion buildup appeared to be superficial and should not affect unit operation. The wicket gates and stay vanes were free of any cavitation damage. There is some cavitation damage on the discharge ring, runner blades and runner hub that was seen during the 2016 inspection however they were well maintained. These small units do not have a penstock but have a normal intake similar to the main units at this powerhouse. During the 2016 inspection the water passage was in very good condition especially considering the number of years the units have been in service.

The original paint system is still visible in many locations on the carbon steel surfaces. This is very good as the paint is continuing to protect the steel surfaces.

2.6.2 TURBINE RUNNER

The turbine runner is original as manufactured by Allis Chalmers Co. in the mid-1950s. The runner is a Kaplan type turbine runner with a 120 inch diameter at the blade centerline. The runner blades can change pitch which gives it a relatively broad range of operation at any single head. The runner converts hydraulic energy into rotational energy. There are no known operational issues with the runner at this time other than the blade cracks which appear to have been addressed. There is a small buildup of corrosion on the carbon steel portion of the blades. The stainless steel overlays looked in good repair the last time they were inspected in 2016. There is cavitation damage on the blades and hub but it has been repaired and the carbon steel surfaces are in good condition.

Figure 10. Wicket Gates and Stay Vane in Good Condition

Figure 11. Discharge Ring SS Repair Shown below a Blade with a Cavitation Fin

Figure 12. Add'l Photo Showing Wicket Gates & Stay Vane with a Corrosion Patina

2.6.3 HEAD COVER

The turbine head covers are original as manufactured by Allis Chalmers in the mid-1950s. There are three components of the head cover, the outer head cover, the intermediate head cover and the inner head cover. The outer head cover mounts to the stay ring and supports the wicket gates. The intermediate head cover is mounted to the outer head cover inner flange and supports the turbine guide bearing housing and the turbine guide bearing. The inner head cover in turn mounts to the inner flange of the intermediate head cover and supports the packing box.

The combination of all three head covers acts primary as structural components, providing a separation of river water from the powerhouse and acting as a hydraulic surface for water flow through the water passage. The outer head cover is a low to medium carbon steel casting while the inner and intermediate head covers are carbon steel fabrications. Based on operational history with no known issues and limited visual inspection, the head covers appear to be in good working condition. There is no visual evidence of cracking, excessive corrosion, or overloading. However, portions of the head cover, including critical surfaces, are not visible without disassembly.

2.6.4 TURBINE SHAFT

The main shafts are original as manufactured by Allis Chalmers in the mid-1950s. The main shaft transfers the torque from the turbine runner to the generator shaft and is the mechanical work portion of producing electrical power. The main shaft contains the stainless steel packing sleeve which is the rotating surface on which the packing material (or water seal) runs keeping water from the water passage from entering the powerhouse. The shaft sleeve has many years of service and likely has wear grooving on the seal surface. The main shaft also contains the journal for the turbine guide bearing and the coupling where the runner attaches to the shaft.

Based on historical operation with no known issues and limited visual inspection, the main shaft appears to be in good working condition. There is no visual evidence of corrosion or overloading. However, portions of the shafts, including critical surfaces, are not visible without disassembly. An analysis assuming 22,600 hp (rating is 18,800 hp) shows the shaft stress to be below 6,000 psi, which is used by HDC as the allowable stress threshold for turbine and generator shafts. The shafting stresses were evaluated in Appendix F.

2.6.5 TURBINE GUIDE BEARING

The fish water units have the main journal guide bearing or turbine guide bearing located directly above the turbine runner and packing box. These bearings are original as manufactured by Allis Chalmers in the mid-1950s. The guide bearings maintain the alignment of the unit during operation. The bearing consists of a journal (rotating portion on the turbine shaft) and babbitted or oil-lubricating surface (stationary portion). The turbine guide bearing is a typical cylindrical carbon steel shell bearing containing two halves that fasten together around the turbine shaft and are mounted to a bearing housing that in turn is mounted to the intermediate head cover which is a stationary component. The journal dimension for this bearing is 20.260/20.262 inches.

Based on historical operation with no known issues, the turbine guide bearings appear to be in good working condition. There is no historical or operational evidence of issues associated with the guide bearings. However, critical surfaces of the bearings are not visible without disassembly and the existing condition of the babbitted bearings and water-lubricating bearing can only be known after disassembly. However, it is common for babbitted bearings of this age and vintage to have disbonding of the babbitt.

The Dalles has a spare turbine guide bearing for the fish water turbines. These bearing will have to be inspected and refurbished.

2.6.6 WICKET GATES

The wicket gates are original as manufactured by Allis Chalmers in the mid-1950s. The wicket gates regulate the flow through the turbine. The wicket gate are fabricated from carbon steel with stainless steel stem sleeves.

Based on historical operation with no known major issues, the wicket gates appear to be in good working condition. There is no evidence of cracking. There is no cavitation damage to the wicket gates; however, the wicket gates have a moderate corrosive build up.

2.6.7 WICKET GATE OPERATING RING AND MECHANISM

The operating ring transmits the force from the wicket gate servomotor to all the wicket gate operating mechanisms, which in turn operate the wicket gates. The operating ring is fabricated from a low to medium carbon steel and original as manufactured by Allis Chalmers in the mid-1950s. The wicket gate mechanism (linkage components) appear to be in good working condition with no known operational issues.

Based on historical operation with no known issues and limited visual inspection, the operating ring and mechanism appear to be in good working condition. There is no visual evidence of corrosion, cracking, or

overloading. However, portions of the operating ring, including critical surfaces, are not visible without disassembly. There is a strong likelihood the operating ring bronze pads have significant wear.

2.6.8 WICKET GATE SERVOMOTOR

The fish water turbine have two servomotors that actuate the wicket gates. The servomotor operates the wicket gates through the operating ring and gate linkage. There are no known issues with the servomotors or wicket gate linkage, but many portions of the servomotor are not visible without disassembly. The servo motors are normally refurbished during a rehabilitation.

2.6.9 WICKET GATE BUSHINGS

The wicket gate bushings are original as manufactured by Allis Chalmers in the mid-1950s. The wicket gate bushings were manufactured from bronze and require grease for operation. The bushings are lubricated by an automatic grease system. The stainless steel sleeved wicket gate stems are the journal surface which rotate inside the bronze bushings and they are a guide and low friction surface for the wicket gates. There are two sets of wicket gate bushings- two upper bushings mounted in the outer headcover and one lower bushing mounted in the bottom ring. Both bushings are exposed to the water passageway. There are no known operational issues pertaining to the wicket gate bushings. During most rehabilitations the greased bronze system as installed here on the fish water turbines are replaced with a self-lubricated bushing and the grease system is removed from the unit.

Figure 13. Unit 2 Disassembled Showing the Combination Generator Thrust Bearing/Upper Guide Bearing

2.6.10 GENERATOR SHAFT

The generator shaft is original as manufactured by Westinghouse Co. in the mid-1950s. The generator shaft transfers the torque from the main shaft and runner to the generator. The generator shaft also contains the journal for the generator lower guide bearing and the mounting location for the thrust bearing collar, the OD of which also acts as the journal for the generator upper guide bearing. The rotor is mounted to the generator shaft below the thrust bearing so this unit has a suspended generator. The exciter was originally mounted to the top of the generator shaft with the Kaplan head mounted above the exciter.

Based on operational history, the generator shaft appears to be in good working condition and there is no evidence of damage to it. Although a large portion of the shaft is not visible for inspection there is no reason to believe there are any problem areas.

A preliminary stress analysis has been performed on the generator shaft and the calculation shows it to be capable of producing 17.92 MW (assuming generator efficiency of 98%). The generator shaft has the smallest cross section and is the limiting shaft of the turbine and generator shafts.

2.6.11 GENERATOR GUIDE BEARINGS

There are two generator guide bearings. The upper generator guide bearing uses the OD of the thrust collar as the journal. There are fourteen guide shoes for this bearing with the journal OD being 52-3/8 inches. The lower generator guide bearing is mounted around the journal on the generator shaft. There are eight guide shoes for this bearing with the journal OD being 28-1/2 inches. Neither of these bearings are accessible for easy inspection, however it is rare that generator guide shoes would fail in operation. During a rehabilitation these bearing shoes will be inspected and most likely it will be an opportunity to rebabbitt them. The Dalles project has a spare set for both of these bearings.

Figure 14. Lower Generator Guide Bearing

2.6.12 THRUST/UPPER GUIDE BEARING ASSEMBLY

The combination thrust bearings/upper guide bearings are original as manufactured by Westinghouse Corp. in the mid-1950s. The combination bearing consists of a thrust collar, thrust runner, eight babbitted thrust shoes and guide shoes, base ring, jack screws, and support system. The thrust bearing is located above the generator rotor. The Dalles fish water units do not have a high pressure lift system and the unit requires jacking prior to start-up after it is down for a period of time. There are no known operational issues; however, the condition of the bearing cannot be determined until after disassembly and completion of non-destructive testing (NDT). It is common for bearing shoes of this age and vintage to have disbonding of the Babbitt which would be addressed during a rehabilitation by rebabbitting the

bearing. The Dalles has a spare Thrust bearing runner and shoes. The thrust bearing/upper guide bearing combination shown in the photo was disassembled in December 2015 due to an oil overheating problem in the bearing tub. The bearing shoes were hand scraped and the oil changed. When the unit was reassembled the overheating issue stopped.

Figure 15. The Turbine Pit Showing the Two Wicket Gate Servos and the Wicket Gate Linkage.

2.6.13 TURBINE PERFORMANCE OF EXISTING UNITS

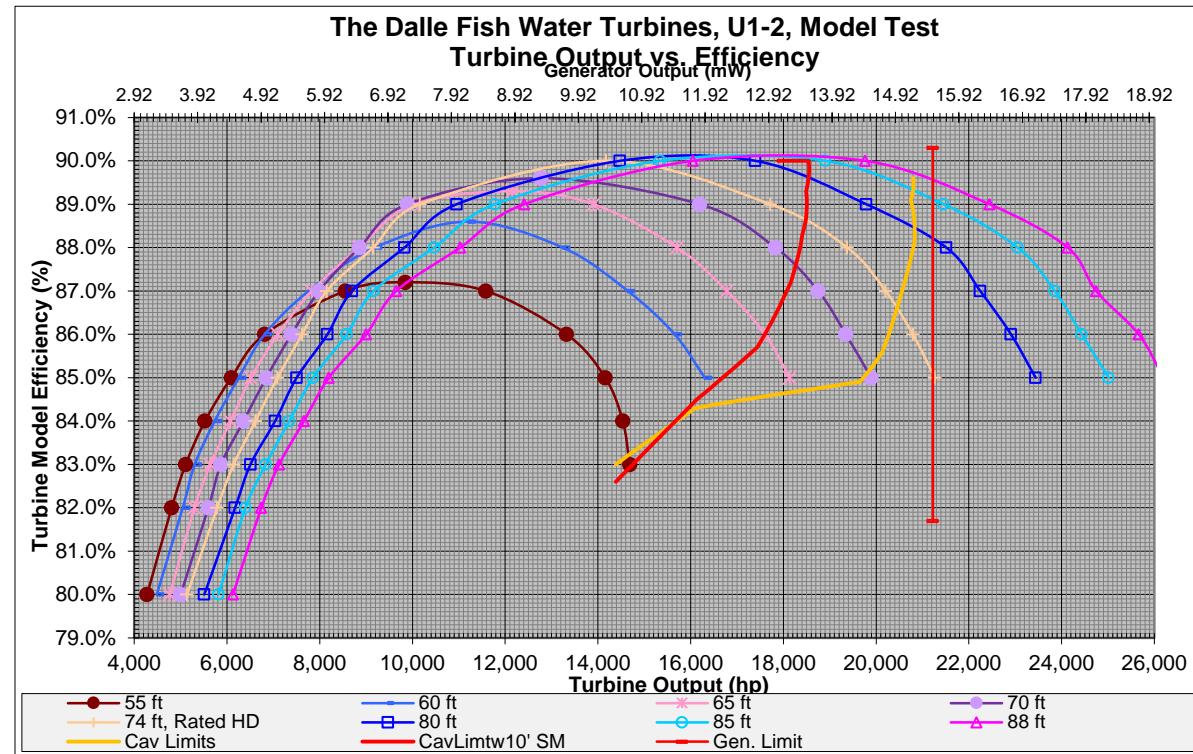


Figure 16. Existing Turbine Performance, Turbine Horsepower vs. Turbine Efficiency

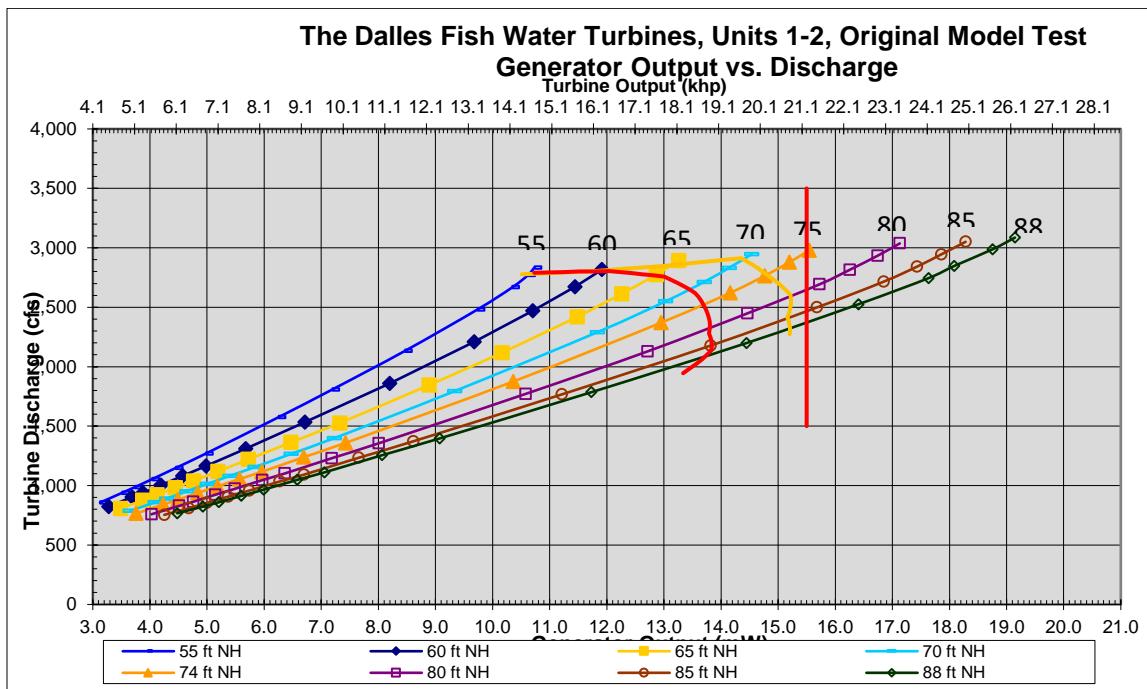


Figure 17. Existing Performance, Turbine Discharge vs. Generator Output in MW

2.7 ANCILLARY EQUIPMENT

2.7.1 GOVERNOR

The governors were originally supplied by Pelton. The governors' front-end was recently converted to digital operation by American governor. This work was completed in 2012. They are currently in good operating condition.

2.7.2 THRUST/UPPER GUIDE BEARING OIL COOLERS

The fish units at The Dalles play an important role in salmon migration and are part of the critical mission of the plant. The project staff has increased monitoring and maintenance of the internal thrust bearing oil coolers. The coolers provide the cooling capacity necessary to maintain thrust bearing oil temperatures that are required for proper lubrication of the thrust bearing.

The coolers are a fin and tube design and are submersed in an oil bath concentric to the thrust bearing.

Figure 18. American Governor Digital Governors

Installed circa 2012

The finned tubes are “coiled” to make six rows of finned tubes. They are built in a semi-circular design such that two halves are required per unit. Raw river water flows through the tubes and acts as the cooling medium. The tubes are soft copper, and are a major source of failure.

The coolers are in poor overall condition and require replacement parts and down time for repairs. Repeated failures have occurred, some causing unplanned outages. The end turns are subject to the most wear and are consequently the most prone to leakage. Failures have come primarily from this area which is a symptom of wear showing the components are at the end of their useful life. In a worst case scenario leakage of cooling water into the oil bath can cause a thrust bearing to wipe. Maintenance and repairs are particularly difficult because of the location of the coolers. Access to the thrust tub requires a partial unstack of the unit down to the thrust bearing. Additionally, repairs often require drainage of the 350 gallons of oil in the thrust tub. The rehabilitation of the units would most likely involve replacement of the coolers.

2.7.3 LOWER GUIDE BEARING OIL COOLER

The lower guide bearing oil is cooled by a tube heat exchanger that is immersed in the lower guide bearing tub. Raw river water is used as the cooling medium. The rotating shaft journal creates a mixing action that effectively distributes cool oil amongst the bearing pads. The coolers have many years of service and will be replaced or rehabilitated. This work would be completed under a normal rehabilitation.

2.7.4 TURBINE GUIDE BEARING

The turbine guide bearing is lubricated by a pump that pressurizes lubricating oil and is piped to the bearing. After lubricating the bearing the oil drains into a sump under the bearing by gravity where it is cooled and then pumped back through the bearing again. For redundancy, the turbine guide bearing lubrication system utilizes both AC and DC pumps. The AC pump is typically used during start up. In the case that AC power is unavailable because of a blackout scenario, the DC pump would be utilized. It is assumed that the pumps are original to the installation of the turbine/generator and should be replaced to maintain unit reliability.

2.7.5 SURFACE AIR COOLERS

The stator air coolers are an integral part of the fish unit’s operation. The four air coolers keep the stator at a temperature that protects the stator windings and insulation from thermal damage. Additionally, they provide the same cooling benefit to other equipment located within the air housing. Raw river water flows through the tubes in the cooler while air is forced around the tubes by baffles on the rotating rotor. The coolers are located within the air housing, around the outside of the stator. The stator air coolers are plate and fin design with integral tubes that circulate water to and from the river. The stator air coolers are not a significant source of failure for the fish units. However, they do have a history of fouling, and maintenance can only be expected to increase. It is assumed that the coolers have reached the end of their useful life and need to be replaced.

2.7.6 WATER AND OIL PIPING

The turbine-generator has a piping system to deliver cooling water to the bearing coolers and air coolers. Additionally, there is oil piping to fill and drain the bearing tubs. This piping is original to the installation of the unit. The piping is not in good condition and must be replaced.

2.7.7 BRAKE AND JACK SYSTEM

The unit has brake cylinders that are used to slow and stop the unit. The cylinders are actuated using pressurized station air. HDC does not have detailed information on the brakes, but it is assumed that they are original to the installation of the equipment. While further inspection will be needed, it is reasonable to assume that the cylinders and pistons are in serviceable condition and can be refurbished. Refurbishment

can include new seals and honing of the cylinders or pistons. The pads should be replaced and the air lines inspected and replaced if necessary.

2.7.8 E-CLOSURE SYSTEM

The emergency-gates serve as the final line of defense in a unit runaway situation, wicket gate failure, or head cover failure. The E-Closure System involves deploying gates to the intake water passage to stop the water flowing into the unit. E-Gates differ from typical bulkheads in that they are designed to deploy under flow.

At The Dalles, the original E-Closure System consisted of dedicated gates and hydraulic cylinders that would deploy the gates at the Corps standard; under 10 minutes. Circa 2004, The Dalles removed the hydraulic cylinders in an effort to reduce the possibility of oil leakage entering the river. The water entering the unit is divided between two water passages and therefore there are two E-Gates per unit. These gates currently hang in the slots and are deployed by the Hammerhead Crane. This crane, however, was not designed for this function. A new E-Closure System is strongly recommended and will increase plant safety and reliability.

Several years ago a nitrogen pressure backup system was added to the units for emergency closure of the wicket gates.

2.8 OTHER ELECTRICAL COMPONENTS

There are currently projects underway to replace the transformers and the 15 kV breakers for the fish water turbines.

3 STRUCTURAL ENGINEERING

3.1 CRITERIA AND CONSTRAINTS

3.1.1 FISH UNIT OUTFALL INTO AWS

The report "The Dalles Dam Powerhouse Fishway Dewatering Improvements" dated September 1999 prepared by CH2M Hill - Montgomery Watson Joint Venture indicates concerns over the design of the downstream wall of the AWS channel which the Fish units discharge into. The report recommends that "a finite element analysis is recommended to clearly define the maximum tailwater elevation at which the Fish Collection Channel and the Auxiliary Water (AWS) Conduit can be dewatered. The analysis completed to date indicates that the AWS Conduit can be dewatered when the tailwater elevation is maintained below elevation 70 fmsl. A maximum tailwater elevation closer to 80 fmsl is more conducive to the project operations." Such an analysis was performed as an addendum to the 1999 report in March of 2000. The conclusion of this analysis was as follows: "...it is recommended that the maximum tailwater elevation not exceed 70.0-fmsl with the auxiliary water conduit and the fish collection channel completely dewatered. It is also recommended that the maximum tailwater not exceed 82.0-fmsl with water in the auxiliary water conduit at a minimum elevation of 55.5-fmsl."

The AWS channel is oriented at a right angle to the Fish unit draft tubes. The Fish unit stoplogs are located immediately upstream of the AWS channel. The Fish Units can be unwatered without impact to this area and without unwatering this area of the AWS. However, the new unit may have increased velocities. The current condition of the area was unknown, however, in order to mitigate risks associated with not knowing the current physical condition, the PDT recommended that the AWS conduit which the fish units discharge into be visually inspected using an ROV during the development of the phase 1a report. This has been completed and no damage was visible on the AWS wall in front of the two turbines discharge.

Documents Reviewed:

Reports and Analyses

- 1) "The Dalles Dam Powerhouse Fishway Dewatering Improvements" dated September 1999
- 2) "Structural Analysis for Determining Maximum Allowable Tailwater Elevation for Dewatering at the The Dalles Dam Powerhouse Fishway" dated March 2000
- 3) "Design Analysis Powerhouse Substructure Phase 1, Units 1 Thru 14, Part 1 of 5 Structural Design Computations for Main Unit Bay," dated September 1952, prepared by Sverdrup & Parcel Inc.

Drawings

DDP-1-4-0/2, DDP-1-4-0/4, 0/18, 0/21, 0/22, 0/23

DDP-1-4-3/7, 3/9, 3/10, 3/11, 3/16, 3/17, 3/18, 3/31

DDP-1-4-6/3

DDP-1-5-0/19, 0/27

DDP-1-4-3/54, 3/66, 3/67, 3/68, 3/69, 3/70, 3/71, 3/74, 3/75, 3/76, 3/81, 3/82, 3/83, 3/84, 3/85

DDP-1.1-5-0/5

DDP-1.1-4-4/26, 4/27, 4/28, 4/37, 4/94, 4/95, 4/96, 4/107

DDP-1.2-4-3/1, 3/5

4 HYDRAULIC DESIGN

The primary purpose of the hydraulic design section is to provide potential targets for upgraded fish unit discharge capacity.

4.1 LIMITED FISH LADDER MODEL

A limited 1-D hydraulic model was developed to estimate fish unit discharge rates required to meet minimum entrance criteria conditions. Previously developed models for The Dalles East Fishladder are no longer available. The entrance discharge rates were estimated from known conditions (geometry, weir settings and entrance head at each entrance) and compared with the recorded fish unit discharge at the same time.

The Dalles Project staff provided fishladder inspection data for the years 2011, 2012 (limited), 2014, 2015, 2016, and some brief data in 2017. The fishladder inspection data has been historically handwritten on hardcopy forms, requiring transcription to an electronic file in order to perform analyses. The data from all years included the tailwater levels and entrance heads at each entrance location (3 total), weir levels in each entrance bay (8 total), fish unit megawatts generated and discharges for most days of the fish passage season. 2011 and 2012 data included the recorded AWS head in the turbine draft tube (referred to as 'channel' in the operation room). Prior to the addition of the governor (2012), this information was required in order to determinate the fish unit discharge from the combination of megawatts and net head. Since the addition of the governor, fish unit discharge is directly computed and provided, and the AWS draft tube level has no longer been collected. The 2017 data included a period of days under a single fish unit operation.

The fish unit discharges were estimated from the hydraulic model and compared with the recorded fish unit discharges. The estimated fish unit discharges were determined by estimating the sum of the entrance discharge and deducting the flow from the upper ladder, 109 cfs.

Estimated $Q_{FU} = \Sigma ED - QL$

In which:

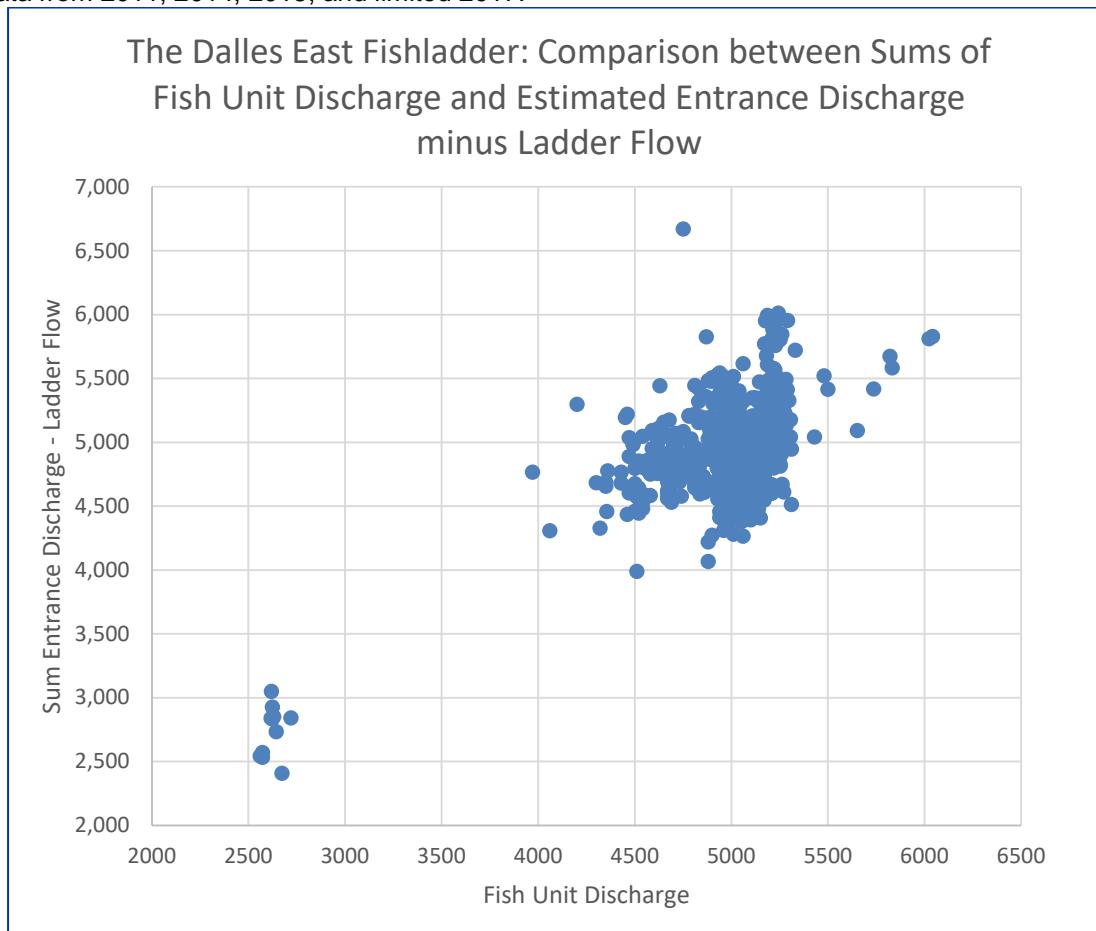
Q_{FU} = sum of fish unit discharges

$\Sigma ED = \Sigma \{Q_i + Q_{i+1} \dots Q_n\}$

QL = Flow from upper ladder = 109 cfs for normal operations

Q_i = Entrance discharge in bay i

n = 8 bays total


The equations and methodology applied in the model are detailed in *The Dalles East Fishladder Ladder Model Memorandum* in Appendix A – Hydraulic Calculations.

The summary statistics shows a comparison between the recorded and estimated fish unit discharge for 200-11, 2014, 2015, and limited 2017 are shown in Table 5. The overall correlation coefficient is 0.68 and the standard error of the estimate for the whole data sample is 254 cfs or 5.1 % of the average recorded fish unit discharge.

Table 5. Summary Statistics of the Recorded versus Estimated Fish Unit Discharge

Years	2011-12	2014	2015	2017 single	Average
Ave. ED - QL	4,784	5,217	5,023	2,739	4,974
Ave. FU	4,881	5,177	4,980	2,623	4,977
Ave. Diff	-97	40	43	116	-3
% of Ave. FU	-2.0%	0.8%	0.9%	4.4%	-0.1%
SD Daily Diff	390	246	189	94	306
% of Ave. FU	8.0%	4.7%	3.8%	3.6%	6.2%
Stand Error	244	138	59	47	254
% of Ave. FU	5.0%	2.7%	1.2%	1.8%	5.1%
				R² = 0.679	

Figure shows a graphical comparison between the recorded and estimated fish unit discharge for all of the data from 2011, 2014, 2015, and limited 2017.

Figure 19. Comparison of Recorded and Estimated Fish Unit Discharges

4.2 CRITERIA AND CONSTRAINTS

The current total fish unit flow capacity is amply sufficient to meet fisheries criteria, so the remaining question is how much single unit capacity should be raised to provide one of the following potential targets:

1. Marginally meet entrance criteria with a single FU operation (3200 cfs)
 - a. 6 entrance weirs open at 8.1 feet submergence, 2 weirs at each entrance location
 - b. Entrance head = 1.1 feet at each entrance
2. Fully meet all fisheries criteria (5000 cfs) at all times.
 - a. Dual FU units (2500 cfs per unit)
3. Fully meet all fisheries criteria (5000 cfs) at all times.
 - a. Single FU (2500 cfs per unit)

In the early PDT discussions, it was acknowledged that target number 3 is infeasible.

A review of the operations at relatively low tailwater elevations ranging between 74 – 76 feet from 2014-2016, and 2011 indicate a total fish unit discharge of 5000 cfs is required to meet full fisheries criteria. At the same tailwater levels, this FU discharge should supply sufficient flow for entrance submergence levels of about 11.5 feet at the East, 9.5 feet at the West and 8.5 feet at the south entrances, all at 1.5 feet of entrance head. Given equivalent entrance parameters (submergence & head), the largest flow rates will be required at the lower tailwater elevations (This will be explained in the description of the modelling development). At higher tailwater elevations, the same flow will pass through entrances at deeper weir submergences, the only remaining possible concern is whether channel velocity is maintained. A review of 2017 data at relatively high tailwater elevations showed that channel velocities were well within criteria under fish unit operations of about 4500-4600 cfs.

Based on the model, the results of the target cases are the following:

1. Marginally meet entrance criteria with single FU unit (emergency operation):
 - a. 3220 cfs at low tailwater
 - b. 2930 cfs at high tailwater
2. Fully meet all fisheries criteria at all times:
 - a. Dual FU units (normal operation)
 - i. Dual combined FU discharge = 5000 cfs total
3. Meet Target #3 (full criteria) (normal or emergency operation, redundant fish unit)
 - a. 5000 cfs single fish unit

The flow criteria for Cases 1 was based on results from the hydraulic model, which estimates the required fish unit flow as a function of the sum entrance discharge less upper ladder flow (see Hydraulic Design Memorandum in Appendix A). For each case, the estimated and recorded fish unit discharges were compared from data taken from similar magnitudes (2500-3000 for Case 1). The estimated predicted Fish Unit discharges were adjusted upwards by a percentage based on the standard error of the estimates divided by the average recorded fish unit discharge form the data samples. The adjustments were made to account for the variability between the predicted versus recorded fish unit discharge and provide additional assurance that the criteria as specified would be met in the event that such operations will be required.

Required fish unit discharge = estimated fish unit discharge $\times (1 + SE/Average\ Q_{FU})$.

In which:

Estimated Fish unit discharge = estimated sum entrance discharge – upper ladder flow;
Upper ladder flow = 109 cfs;

SE = standard error of the estimate between the estimated and recorded fish unit discharges with data sample;
Average Q_{FU} = average recorded fish unit discharge within data sample;
Case 1 data samples include estimated or recorded between 2500-3000 cfs (single unit);

5 TURBINE ENGINEERING

5.1 TURBINE CRITERIA AND CONSTRAINTS

In order to help develop the alternatives for the Dalles Fish Water turbines and to narrow the scope of alternatives to be considered, several criteria and constraints were identified. The criteria and constraints guide the alternative choices and the evaluation of those alternatives.

5.1.1 CRITERIA

The following criteria will be used to develop and evaluate each alternative (in order of descending importance):

- 1) Reliability/Dependability: A very important criterion for fish water turbines is reliable/dependable operation. It is desired that these units operate without failure over their design life. Design life is defined as 30 years.
- 2) Increased Discharge: Another very important criterion is producing increased discharge through the unit since the discharge is used to feed the fish attraction system. The goal for increased discharge is that one unit be able to keep the fishway in marginal entrance criteria (about 3200 cfs) should one unit fail. However the units have to have the flexibility to also operate in the normal flow region between 2100 cfs and 2700 cfs.
- 3) Environmental Friendliness: A runner hub filled with oil increases the risk of oil entering the river. Though refurbishment and redundant oil seal modifications can mitigate this risk, it cannot be completely removed. One alternative will be to replace the existing oil filled hubs with an oil-free hub. Another possibility is to replace Kaplan turbine with a propeller type turbine containing fixed blades. The use of this turbine type will lessen the risk of oil leakage
- 4) Power Production/Turbine Efficiency: A replacement turbine runner should be able operate at a reasonable overall efficiency and if uprated shall be able to operate at a high power output.
- 5) Low Maintenance Frequency: Another important criterion for the fish water units is a low maintenance frequency. Because these units operate most of the time to provide required discharge to the fish system, low maintenance requirements are preferred.
- 6) Outage Duration: The amount of time the unit will be out of service.
- 7) Ease of Construction: Alternatives will be evaluated for ease of construction, this represents the uncertainty and risk involved in a particular construction activity. As an activity gets more complex, the uncertainty in price increases. Designs that require significant modifications to the dam structure should be minimized.
- 8) Cost: Cost will be considered separately from other criteria, but is an important criterion. The units are not required for power production but for fish passage. The value of fish passage cannot be measured quantitatively since it is not a measurable item so no economic study will be performed.

5.1.2 CONSTRAINTS

5.1.2.1 Physical Constraints

- 1) The fish water turbines were constructed similar to other hydro turbine in that the majority of the hydraulic passageways are embedded in concrete. This type of construction makes it impracticable to make substantial changes to these passageways; therefore, these passageways are a constraint (turbine intake, discharge ring, draft tube, wicket gate circle and pad height, etc.).
- 2) Similarly, the generator has physical limitations as well. The physical configuration of the generator stator and rotor prevent large-scale alteration of the unit configuration. A change to the generator design would require significant changes to the structures within the powerhouse and is impractical.
- 3) The current gross head at The Dalles project will not change and is therefore a constraint.

5.1.2.2 Existing Fish Water Rating

The current rated condition for The Dalles fish water turbine runners is 18,800 horsepower at 74 feet net head. This is equivalent to a generator output of 13.74 MW assuming a generator efficiency of 98%.

5.1.2.3 Shaft Limit

The mechanical stress on the existing turbine shaft and generator shaft was investigated to determine maximum allowable horsepower. The Corps has designed new runners for a maximum shaft shear stress of 6,000 psi. The existing generator shaft minimum diameter is 19 inches OD with a 7-3/8 inch interior hole diameter (for oil head piping). The existing turbine shaft minimum diameter is 20 inches OD with a 9-3/4 inch interior hole diameter (for oil head piping). Due to the cross section of the generator shaft it becomes the limiting factor in determining the maximum output of the turbine runner. The maximum output of the unit assuming that the unit is operated to the 6,000 psi maximum shaft shear stress is 17.95 MW. This is equivalent to 24,071 horsepower (with generator efficiency 98% and pf. 1.0). This works out to about a 28% increase over the existing unit's rated output of 18,800 horsepower.

5.1.2.4 Additional Shaft Limit Information

There have been several instances where the maximum design shear stress was allowed to be higher than this 6,000 psi limit. However, this is only allowed based on a field study in which the shafting system is tested by applying strain gauges to the shaft and operating units to determine the actual loading on the shafts under field conditions. It is also an opportunity to measure special shaft stresses like unit starts and unit stops and unit load rejections so a more realistic understanding of the specific field conditions for the shafting system can be determined. Based on this field study the shear load limits may be raised to a higher value. In the past units have been allowed to be taken to a maximum shaft shear stress of 6,500 psi or 6,800 psi based on the field studies.

The power limit for the fish water turbines at The Dalles has been calculated for the normal 6,000 psi shear stress limit in paragraph 5.1.2.3 above. The generator shaft is the limiting component. The potential estimated unit output if the shear limit is raised to 6,500 psi is 18.48 MW (18.48 MVA x 1.0 pf., 24,782 horsepower, 32.0% increase). The potential estimated unit output if the shear limit can be raised to 6,800 psi is 19.33 MW (19.33 MVA x 1.0 pf., 25,922 horsepower, 37.8% increase).

It should be noted that with these substantial increases in output there may be other systems that would have to be upgraded, i.e. the governor system operating pressure may have to be increased.

5.1.2.5 Hydro Turbine Runner

The existing turbine runner is a Kaplan-type runner with a rated head of 74 feet. New runners, therefore, will be limited to either a fixed-blade propeller runner or an adjustable blade Kaplan-type runner.

5.2 TURBINE SUB-ALTERNATIVES

5.2.1 ALTERNATIVES ANALYSIS

In order to provide the best evaluation of alternatives for the Phase 1A report, alternatives with little merit will be eliminated from future consideration. This allows the PDT to focus effort on the alternatives which demonstrate the most promise.

Alternatives will be evaluated on the following major criteria established in Section Turbine Criteria and Constraints: Reliability/Dependability, Increased Discharge, Power Production/Efficiency, and to a lesser extent, Lower Maintenance Frequency, Environmental Friendliness, outage duration, ease of construction and cost.

Reliability/Dependability will be judged on the expected length of service, i.e. a new runner installation will be judged as more reliable/dependable than a rehabilitation of an existing runner.

Increased discharge will be judged as to whether it increases unit discharge by a measurable amount greater than the existing units, i.e. 10%.

Power production and efficiency will be ranked on whether it increases, decreases, or makes no change in MW-hrs, as compared to the current baseline.

Environmental friendliness will be ranked on whether the alternative will increase, decrease, or make no change in the positive aspects of environmental impacts.

Outage duration and ease of construction will be judged as the length of time that a unit is out of service, i.e. the rehabilitation of an existing unit will take longer than the installation of a new runner.

Cost will be presented as a dollar value, rounded to the nearest tenth of \$1M. All costs are for both units at The Dalles.

Difficult constructability will tend to increase actual costs during construction. Ratings include complex, moderate, and easy.

5.2.2 ALTERNATIVE ANALYSIS ASSUMPTIONS

The following assumptions have been included in the below analysis:

- a. A minimum level of generator maintenance or cleaning is prudent with turbine runner rehabilitation or replacement. It is unlikely that it is advantageous to unstack a generating unit and not perform some work on the generator. It is further assumed that maintenance functions detailed in Existing Conditions Section, could be applied for any scenario; that is, a selected maintenance item would cost the same for one alternative as another.

Generator rewind or maintenance would not occur as a standalone construction item.

5.2.3 TURBINE SUB-ALTERNATIVES THAT WERE CONSIDERED

These sub-alternatives will be considered:

1. Do nothing and Operate to Failure
2. Convert the existing units to fixed blade (pinning/blocking blades)
3. Rehabilitate existing units
4. In-kind Kaplan runner replacement with same rated output as existing
5. Replacement Propeller runner with same output as existing
6. Uprate units to 6000 psi shaft limit and replace runners with Oil-Filled Kaplan units
7. Uprate units to 6000 psi shaft limit and replace runners with Oil-Free Kaplan units
8. Uprate units to 6000 psi shaft limit and replace runners with fixed blade propeller units
9. Uprate units to Higher than 6000 psi shaft limit and replace runners with Oil-Filled Kaplan units
10. Uprate units to Higher than 6000 psi shaft limit and replace runners with Oil-Free Kaplan units
11. Uprate units to Higher than 6000 psi shaft limit and replace runners with fixed blade propeller units

5.2.3.1 Sub-Alt 1, Base Case – Do Nothing and Operate to Failure

In this case the turbine components will be operated until failure. Normal maintenance will be performed on the units as has been done in the past but no extra effort will be made to replace any components. The fish turbines still have a spare bearing so any bearing failure will be able to be addressed.

5.2.3.2 Sub-Alt 2, Convert the Existing Units to Fixed Blade

In this case the blades would be pinned or blocked in one position and oil would be removed from the runner hub converting the unit to oil-less operation as a propeller unit. This conversion would remove oil from the runner hub which removes a potential environmental issue from consideration and would make the Kaplan linkage inside the runner hub inoperable which would remove a potential major failure scenario.

5.2.3.3 Sub-Alt 3, Rehabilitate Existing Units

This alternative would rehabilitate the existing runner and other stationary and rotating components and make the existing unit like new with new linkage inside the runner hub.

5.2.3.4 Sub-Alt 4, In-Kind Kaplan Runner Replacement

This alternative would replace the existing runners with a new unit with the same output and discharge.

5.2.3.5 Sub-Alt 5, Fixed Blade Propeller Replacement with Same Rated Output as Existing

This alternative would replace the existing runners with a new unit with the same output and discharge

5.2.3.6 Sub-Alt 6, Uprate Units to the 6,000 psi Shaft Limit and Replace with Oil-Filled Kaplan Units (adjustable blade runners)

This alternative would replace the existing units with an uprated Kaplan runner (adjustable bladed runners) potentially producing more power and discharge. The flow may be able to be increased to about 20% over existing flow from the existing units.

5.2.3.7 Sub-Alt 7, Uprate Units to the 6,000 psi shaft limit and Replace with Oil-Free Kaplan Units (adjustable blade runners)

This alternative would replace the existing Kaplan units with an oil-free hub design. This is an environmental upgrade but it may come with an associated risk of less life and less dependability.

5.2.3.8 Sub-Alt 8, Uprate to the 6,000 Psi Shaft Limit and Replace with Propeller Units (non-adjustable blades)

This alternative would replace the existing units with an uprated propeller runner (non-adjustable bladed runners) potentially producing more power and discharge. The flow may be able to be increased to about 20% over existing flow on the existing units. The propeller units would not have the flexibility of the Kaplan units.

5.2.3.9 Sub-Alt 9, Uprate Units to Higher than 6000 Psi Shaft Shear Limit and Replace with Oil-Filled Kaplan

This alternative would uprate the units to higher than the 6,000 psi limit. More power and discharge will be produced than Sub-Alt #5, possibly as much as 30% more discharge. This alternative would require performing a shaft life study to determine whether the turbine and generator shafts could be operated at the higher output. Because of the higher output there may be other additional costs associated with this alternative.

5.2.3.10 Sub-Alt 10, Uprate Units to Higher than 6,000 psi Shaft Limit and Replace with Oil-Free Kaplan Units (adjustable blade runners)

This alternative would replace the existing Kaplan units with an oil-free hub design and uprate the units to higher than the 6,000 psi limit. More power and discharge will be produced than Sub-Alternative #6, possibly as much as 30% more discharge. This alternative would require performing a shaft life study to determine whether the turbine and generator shafts could be operated at the higher output. Because of the higher output there may be other additional costs associated with this alternative. This is an environmental upgrade but it may come with an associated risk of less life and less dependability. These details will be refined in the engineering analysis.

5.2.3.11 Sub-Alt 11, Uprate to Higher than 6,000 Psi Shaft Limit and Replace with Propeller Units (Non-Adjustable Blades)

This alternative would uprate the units to higher than the 6,000 psi limit and install a fixed blade propeller. More power and discharge will be produced than Sub-Alt #7, possibly as much as 30% more discharge. This alternative would require performing a shaft life study to determine whether the turbine and generator shafts could be operated at the higher output. Because of the higher output there may be other additional costs associated with this alternative.

6 GENERATOR ENGINEERING

6.1 ELECTRICAL TESTING

6.1.1 GENERAL DISCUSSION

As with all equipment, generators have a finite service life. The service life of an electrical generator is directly related to the condition of the stator winding insulation materials of the generator. Therefore, it is advantageous to gain insight into the condition of the insulation system. There are several tools that can provide information about the existing condition of a generator. No diagnostic tools can pinpoint the exact date of failure, but they can inform the owner/operator of the condition of the insulation by providing different pieces of information. When these pieces of information are looked at together, a qualitative assessment can be made regarding the expected remaining useful life.

The tools that are commonly utilized to assess the condition of the electrical portion of the generator (stator winding and rotor/field winding) include the following:

- 1) Visual/Physical Inspection (rotor and stator windings)
- 2) Insulation Resistance/Polarization Index (IR/PI) Testing (rotor and stator)
- 3) DC Ramp Over Potential Testing (stator)
- 4) Partial Discharge Analyzer (PDA) Testing (stator)
- 5) Ozone Monitoring

Each test provides information and insight into the condition of the generator. The more information one gathers the more one can refine an estimate for remaining life. Due to limits in funding, unit availability, access, and other circumstances, there is a limit to the testing that can be completed. Furthermore, in some cases, there is a diminishing return as more testing is performed.

6.1.2 VISUAL/PHYSICAL INSPECTION (ROTOR AND STATOR)

The first step is to gather information on the condition of a generator is to complete a thorough visual/physical inspection by a knowledgeable generator specialist. There are limitations on what can be viewed without partial disassembly. Components that were not accessible have been inspected. Additional inspection may be considered in the Phase 1 effort.

Based on the visual inspection the windings in both units appear in fair condition for their age.

6.1.3 IR/PI TESTING (ROTOR AND STATOR)

IR/PI (Insulation Resistance/Polarization Index) testing is used to provide information on the condition of the insulation. IEEE Standard 43 recommended test voltages for the IR/PI tests are performed at a voltage lower than the rated voltage of the winding, typically 10kV for a 13.8kV rated generator, so there is little risk of insulation rupture. The results of this test give some indication of the condition of the winding insulation, but mostly indicate if the winding is dirty or wet. This test can be completed on the rotor in the same fashion as on the stator, with the notable exception that the applied test voltage is substantially lower.

The IEEE 43-2000 defines the Polarization Index (PI) is as the ratio of the 10 minutes insulation resistance (IR_{10}) to the 1 minute insulation resistance (IR_1), tested at a relatively constant temperature. The recommended minimum value of PI for ac and dc rotating machines are listed in the table below:

Thermal Class Rating	Minimum PI
Class A	1.5
Class B	2
Class F	2
Class H	2

If the 1 minute insulation resistance is above 5,000 Mohms, the calculated PI may not be meaningful. In such cases, the PI may be disregard as a measure of winding condition.

IEEE Standard 43, recommends, when feasible, that each phase be isolated and tested individually, with the other 2 phases grounded. Separate testing allows comparisons to be made between phases and tests the phase-to-phase insulation as well as the phase-to ground insulation. Testing all three phases together is also acceptable and less time consuming, but provides less useful information. When testing all phases concurrently, only the insulation to ground is tested and thus the phase-to-phase insulation is not tested. Testing individual phase requires more effort than testing all three phase together.

The minimum insulation resistance after 1 minute, $IR_{1\text{min}}$ for overvoltage testing or operation of ac and dc machine stator windings and rotor windings can be determined from Table 3 below. The actual winding insulation resistance to be used for comparison with $IR_{1\text{min}}$ is the observed insulation resistance, corrected to 40°C, obtained by applying a constant direct voltage to the entire winding for 1 minute.

Table 6. Recommended Minimum Insulation Resistance Values at 40C (Values in MΩ)

Minimum insulation resistance	Test specimen
$IR_1 \text{ min} = kV + 1$	For most windings made before about 1970, all field windings, and others not described below
$IR_1 \text{ min} = 100$	For most dc armature and ac windings built after about 1970 (form-wound coils)
$IR_1 \text{ min} = 5$	For most machines with random-wound stator coils and form-wound coils rated below 1 kV

NOTES

1. $IR_1 \text{ min}$ is the recommended minimum insulation resistance, in megohms, at 40°C of the entire machine winding
2. kV is the rated machine terminal to terminal voltage, in rms kV

Correction to 40°C may be made by using Equation 1:

$$K_T = (0.5)^{(40 - 20)/10} = 0.25 \quad (\text{Eq 1})$$

The correction may be made by using Equation 2:

$$R_C = K_T R_T \quad (\text{Eq 2})$$

Where,

R_C is insulation resistance (in megohms) corrected to 40°C

K_T is insulation resistance temperature coefficient at temperature $T^{\circ}\text{C}$

R_T is measured insulation resistance (in megohms) at temperature $T^{\circ}\text{C}$

The tables below tabulate results of the Insulation Resistance and Polarization Index (IR/PI) tests (also known as Megger tests) for the stator and rotor of units 1 and 2. The Insulation Resistance (IR/PI) test is a useful indicator of the contamination and moisture on the exposed insulation surfaces of a winding, especially when there are cracks or major faults in the insulation. These values exceed the minimum acceptable values as shown in Table 3. This indicates that the winding insulation of the stator and rotor is clean and dry.

Table 7. Insulation Resistance and Polarization Index (IR/PI) Test Results for Fish Unit 1 Stator

TD FU01 Stator														
Tested By	Date	Specimen Temperature (deg. C.)	Stator Wye-connected (Annual Only)			Stator Isolated_A-phase (Overhaul Only)			Stator Isolated_B-phase (Overhaul Only)			Stator Isolated_C-phase (Overhaul Only)		
			1-min. IR @ 10kVDC (Megohms)	10-min. IR @ 10kVDC (Megohms)	P.I.	1-min. IR @ 10kVDC (Megohms)	10-min. IR @ 10kVDC (Megohms)	P.I.	1-min. IR @ 10kVDC (Megohms)	10-min. IR @ 10kVDC (Megohms)	P.I.	1-min. IR @ 10kVDC (Megohms)	10-min. IR @ 10kVDC (Megohms)	P.I.
R. Ontiveros	27 Feb. 2007	20				7500	45000	6	7500	45000	6	8250	37500	4.54
S. Powell	30 Jan. 2014	20	2290	11800	5.15									
B. Sterrenberg	2 Mar. 2016	20	2590	14200	5.49									

Using Equation 1: $K_T = (0.5)^{(40 - 20)/10} = 0.25$

Using Equation 2: $R_C = K_T R_T = 0.25 \times 2,590 \text{ M}\Omega = 647.5 \text{ M}\Omega$

The minimum acceptable value for the stator is 100 MΩ.

The PI for Unit 1 stator winding insulation resistance test was 5.49, which exceeded the minimum requirement of 2.

Table 8. Insulation Resistance and Polarization Index (IR/PI) Test for Fish Unit 2 Stator

TD FU02 Stator														
Tested By	Date	Specimen Temperature (deg. C.)	Stator Wye-connected (Annual Only)			Stator Isolated_A-phase (Overhaul Only)			Stator Isolated_B-phase (Overhaul Only)			Stator Isolated_C-phase (Overhaul Only)		
			1-min. IR @ 10kVDC (Megohms)	10-min. IR @ 10kVDC (Megohms)	P.I.	1-min. IR @ 10kVDC (Megohms)	10-min. IR @ 10kVDC (Megohms)	P.I.	1-min. IR @ 10kVDC (Megohms)	10-min. IR @ 10kVDC (Megohms)	P.I.	1-min. IR @ 10kVDC (Megohms)	10-min. IR @ 10kVDC (Megohms)	P.I.
T. Tillman	1 Feb. 2012	20			5.6									
S. Von Borstel	9 Mar. 2016	20	1660	9240	5.56									
S. Von Borstel	12 Jan. 2017	20	1920	11200	5.83									

Using Equation 1: $K_T = (0.5)^{(40-20)/10} = 0.25$

Using Equation 2: $R_C = K_T R_T = 0.25 \times 1,920 \text{ M}\Omega = 480 \text{ M}\Omega$

The minimum acceptable value for the stator is 100 MΩ.

The PI for Unit 2 stator winding insulation resistance test was 5.83, which exceeded the minimum requirement of 2.

Table 9. Insulation Resistance and Polarization Index (IR/PI) Test Results for Fish Unit 1 Rotor

TD FU01 Rotor														
Tested By	Date	Specimen Temperature (deg. C.)	Rotor & Slip Ring (Annual Only)			Rotor & Slip Ring (Overhaul Only)			1-min. IR @ 500VDC (Megohms)	10-min. IR @ 500VDC (Megohms)	P.I.	1-min. IR @ 500VDC (Megohms)	10-min. IR @ 500VDC (Megohms)	P.I.
			1-min. IR @ 500VDC (Megohms)	10-min. IR @ 500VDC (Megohms)	P.I.	1-min. IR @ 500VDC (Megohms)	10-min. IR @ 500VDC (Megohms)	P.I.						
S. Powell	12 Feb. 2013	20	175	569	3.25									
S. Powell	30 Jan. 2014	20	183											
S. Von Borstel	5 Feb. 2015	20	117											
B. Sterrenberg	2 Mar. 2016	20	232											

Using Equation 1: $K_T = (0.5)^{(40-20)/10} = 0.25$

Using Equation 2: $R_C = K_T R_T = 0.25 \times 232 \text{ M}\Omega = 58 \text{ M}\Omega$

The minimum acceptable value for the rotor is 14.3 MΩ.

Table 10. Insulation Resistance and Polarization Index (IR/PI) test Results for Fish Unit 2 Rotor

TD FU02 Rotor								
Tested By	Date	Specimen Temperature (deg. C.)	Rotor & Slip Ring (Annual Only)			Rotor & Slip Ring (Overhaul Only)		
			1-min. IR @ 500VDC (Megohms)	10-min. IR @ 500VDC (Megohms)	P.I.	1-min. IR @ 500VDC (Megohms)	10-min. IR @ 500VDC (Megohms)	P.I.
D. Christensen	17 Feb. 2004	20	75					
T. Tillman	1 Feb. 2012	20	48					
R. Brumbaugh	12 Feb. 2013	20	251	565	2.25			
J. Borrà	12 Feb. 2014	20	314					
S. Von Borstel	9 Mar. 2016	20	279					
S. Von Borstel	12 Jan. 2017	20	267					

Using Equation 1: $K_T = (0.5)^{(40-20)/10} = 0.25$

Using Equation 2: $R_C = K_T R_T = 0.25 \times 267 \text{ M}\Omega = 66.75 \text{ M}\Omega$

The minimum acceptable value for the rotor is 14.3 MΩ.

6.1.4 DC RAMP OVER POTENTIAL TESTING (STATOR ONLY)

The DC ramp over potential test is similar to the IR test in that a voltage is applied to the winding one phase at a time with the other two phases grounded. However, in this test an automatic tester raises the test voltage at 1kV/minute to render the capacitive current constant over the period of the test. By plotting the applied voltage against the measured current, a characteristic curve can be developed and compared to future (or past) test results, or results from sister units or other phases of the same winding. Also, this test provides real time feedback to the test technician or engineer of a sudden change in current, thus possibly allowing the test to be stopped before an insulation rupture occurs. This real time feedback allows the technician to apply a much higher voltage to the winding, above the nominal voltage rating, which will provide information that is not otherwise provided in a standard IR/PI test. Note that due to the over voltage nature of the test, there is a greater risk of damaging the insulation of the winding.

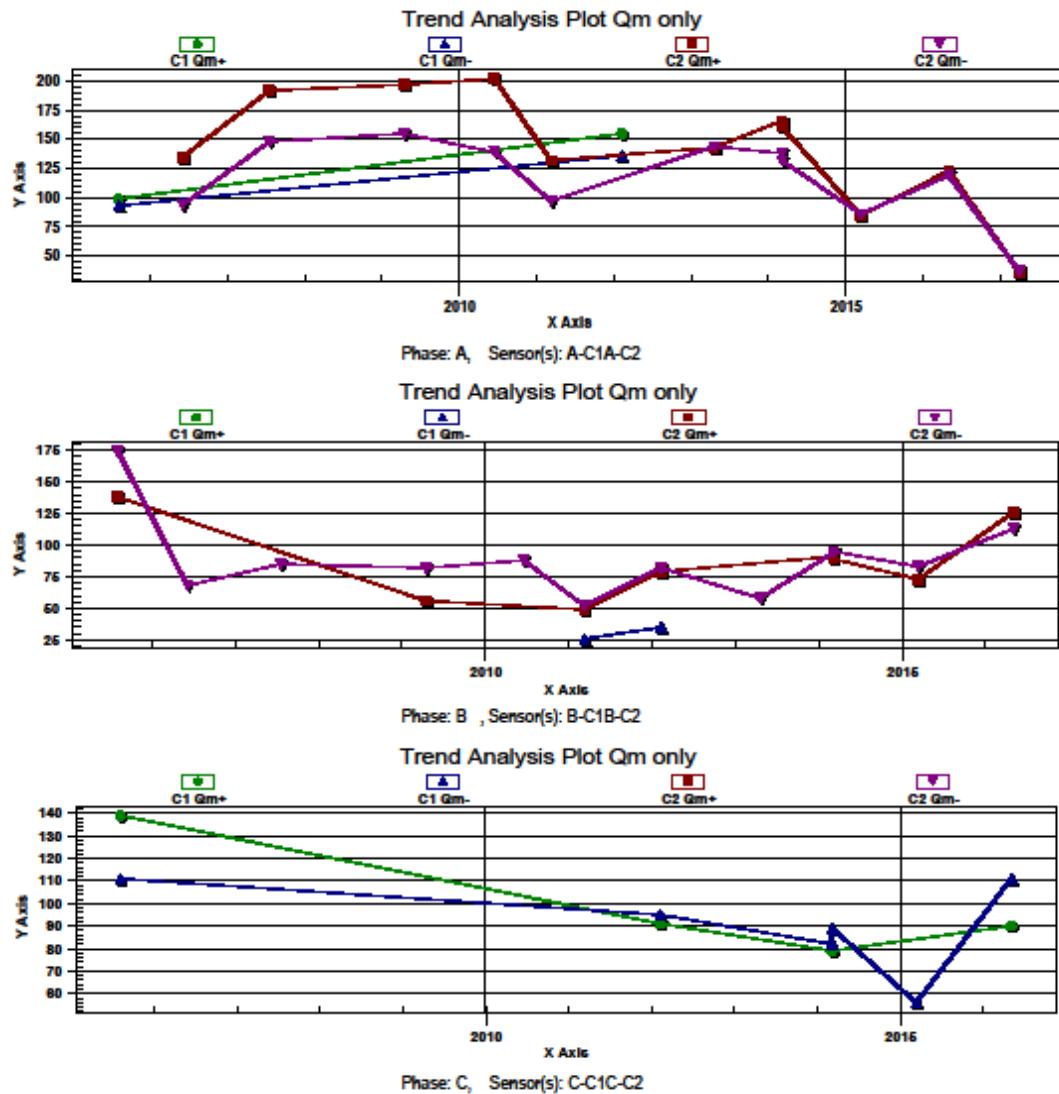
DC over potential testing is not recommended on the field winding (rotor) circuits.

Per IEEE Standard 95, tests are made on each phase of the winding. Separate testing allows comparisons to be made between phases.

It appears a DC ramp over potential test has never been performed on these units. According to the Project, the it was very difficult to disconnected the disconnect the phases

6.1.5 PARTIAL DISCHARGE ANALYZER (PDA) TESTING

Partial discharge tests are sensitive to a wide variety of stator groundwall insulation deterioration mechanisms. The PDA test is an on-line test suitable for hydro-electric generators. In the PDA test, high voltage capacitors are permanently installed in the stator winding. An instrument called the Partial Discharge Analyzer is used to measure the partial discharge activity when the generator is in service.


Below are the trend reports of Partial Discharge for the Fish Units.

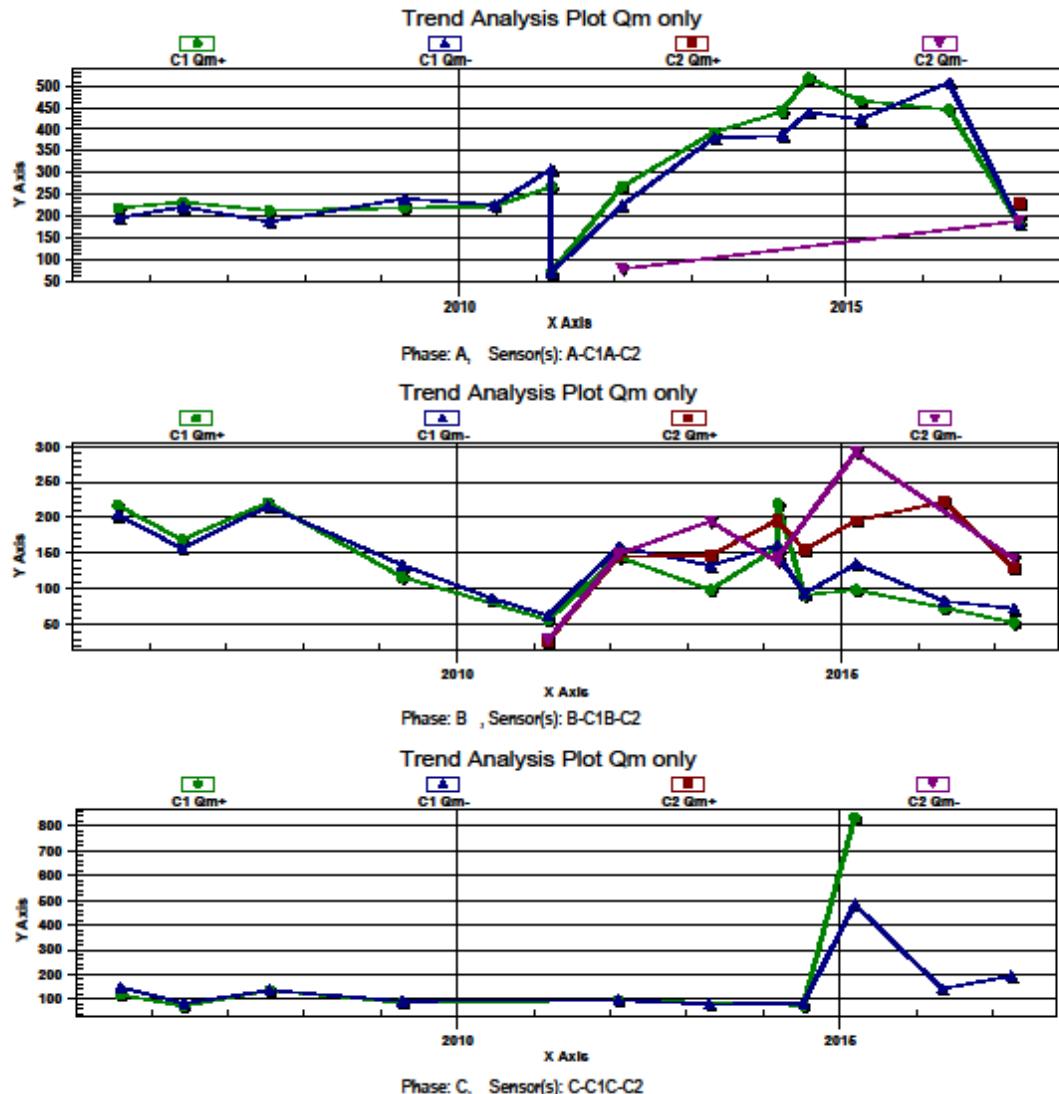
PD Trend Analysis

Asset Name: F.U.# 1

Folder: F.U. & M.U. Generators, Asset Class: Hydro Generator

Manufacturer: WESTINGHOUSE, Year of Installation: 1957, Re-Wind Manufacturer: WESTINGHOUSE, Re-Wind Year: 1998
 Stator Voltage Rating: 13800.000, Active Power Rating: 15.52 MW, Reactive Power: 16340000.153, Gas Pressure Rating: N/A
 Cooling System: Air Only, Winding Type: Unknown, Insulation Type: Epoxy Mica
 Insulation Class: F, Insulation Process: Unknown

Iris Power LP, 3110 American Dr., Mississauga, On, Canada L4V 1T2, Phone: +1 (905)-677-4824, Fax: +1 (905) 677-8498


Figure 20. PD Trend Analysis, Fish Unit 1

PD Trend Analysis

Asset Name: F.U.# 2

Folder: F.U. & M.U. Generators, Asset Class: Hydro Generator

Manufacturer: WESTINGHOUSE, Year of Installation: 1957, Re-Wind Manufacturer: WESTINGHOUSE, Re-Wind Year: 1997
 Stator Voltage Rating: 13800.000, Active Power Rating: 15.52 MW, Reactive Power: 16340000.153, Gas Pressure Rating: N/A
 Cooling System: Air Only, Winding Type: N/A, Insulation Type: Epoxy Mica
 Insulation Class: F, Insulation Process: N/A

Iris Power LP, 3110 American Dr., Mississauga, On, Canada L4V 1T2, Phone: +1 (905)-677-4824, Fax: +1 (905) 677-8498

Figure 21. PD Trend Analysis Fish Unit 2

Table 11. Categorizes the Magnitude (mV) of PD that is Measured

PD Severity	+/-Qm for 13-15kV Hydro-generators
Negligible (25%)	<34 mV
Low (50%)	<88 mV
Average (75%)	<190 mV
Moderate (90%)	<364 mV
High (95%)	<530 mV
Very High (99%)	>530 mV

This information is based on Iris Engineering's 2016 Statistical Analysis

***The frequency of discharges in pulses per second (NQN) are no longer categorized by Iris Engineering as they discovered that NQN did not correlate well with regards to the insulation condition.

2016 Summary for Unit 1

The overall long-term trend continues to be stable for all three phases. Historically there has been **low to moderate** PD detected at the C2 capacitor for A- and B- phase and at the C1 capacitor for C-phase. All of the PD appears to be “non-Classic” and possibly the result of the oil/brake dust contamination noted in the January 2015 inspection. Results still confirm that the C1 and C2 connections for A-phase had been inadvertently reversed in 2005 and 2012.

2016 Summary for Unit 2

The C1 capacitor for A-phase continues to detect a significant amount of Classic PD that is considered **high** for 13.8kV hydro-generators (the severity has doubled since 2005 and is greater than 95% of similar machines). A “spike” in the PD pattern suggests that the discharges are occurring outside of the slot in the voltage stress coating. This condition exists on only A-phase and while the condition is stable, it will continue to be monitored more frequently. A visual inspection was performed during routine maintenance in January 2015 and the winding itself appeared to be very clean. While a band of white powdery residue at the coil slot exit is evidence of discharges in this area - no powder was noted. The severity of the PD for B-phase has historically been **average to moderate** and a cloud-like pattern suggests that gap-type discharges are also occurring in the end winding area. In March 2015, the C1 capacitor for C-phase detected **high** PD that is now **average**. Historically it also has produced a cloud-like pattern which supports gap-type discharges.

2017 Summary for Unit 1

Recent discharges were much less severe on all three phases when compared to historical results. Neither B- or C-phase produced any PD at either capacitor. The overall long-term trend continues to be stable. Historically there has been **low to moderate** PD detected at the C2 capacitor for A- and B- phase and at the C1 capacitor for C-phase. All of the historical PD appears to be non-Classic and possibly Inter-phasal. There is also evidence that temperature may have a direct effect on the magnitude of the PD being measured. The higher the winding temperature has been, the greater the magnitude of the discharges. Results still confirm that the C1 and C2 connections for A-phase had been inadvertently reversed in 2005 and 2012.

2017 Summary for Unit 2

This year, both the C1 and C2 capacitors for A-phase detected PD having average severity and it likely appears to represent Classic PD with no predominance. Additionally, there was no “spike” in the PD pattern this year and therefore these discharges may not have been occurring just outside of the slot in the voltage stress coating. For now, this condition appears to be stable. The severity of the PD for B-phase remains **average to moderate** and a cloud-like pattern still suggests that non-Classic gap-type discharges are still occurring in the end winding area. In March 2015, the C1 capacitor for C-phase detected **high** PD that is now **moderate**. Historically it also has produced a cloud-like pattern which supports gap-type discharges.

6.1.6 OZONE MONITORING

When winding discharges occur in air-cooled machines such as hydro-generators, ozone gas is created. Thus monitoring of the ozone concentration in a machine is an indirect (non-electrical) means of determining if certain types of partial discharge (PD) are occurring in the stator winding. The monitoring is performed during normal operation.

The ozone concentration is considered high if it exceeds 1 parts per million. Ozone monitoring is typically done annually.

Two main methods are available to measure the ozone concentration. The fairly easy and relatively inexpensive method uses gas analysis tubes which are sensitive to ozone. One brand is made by Draeger and is available from chemical supply companies. When the tubes are broken open, a chemical inside the tube changes color and the approximate ozone concentration can be read. It is recommended the test be repeated once every six months. A second method uses an electronic instrument which can measure the ozone concentration continuously. A sensor is placed within the machine enclosure or in the exhaust air stream. The sensor is expensive and requires calibration annually. An analyzer is required to collect the data.

With the exception of June 2016 measurement on unit 2 (0.12 ppm), the level in both units were found acceptable. The ozone level appears trending upward. This is an indication of more slot discharge activities.

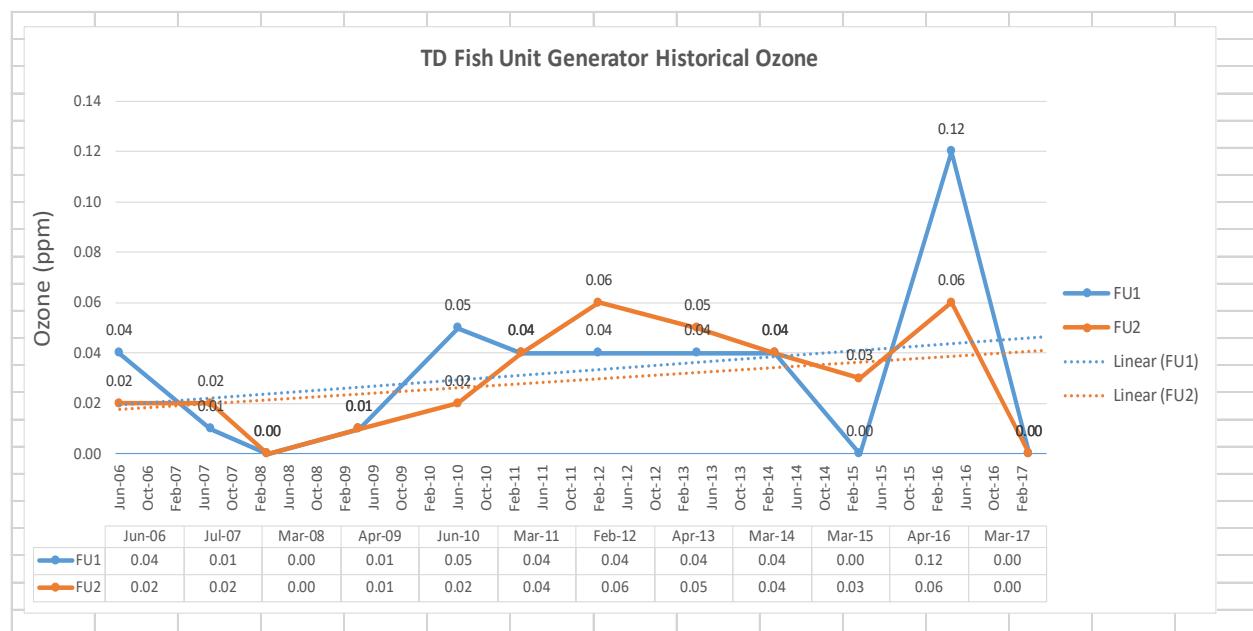


Figure 22. Ozone Data

Generator Criteria and Constraints

6.1.7 CRITERIA

Reliable operation of the generators as defined by:

1. Reliability/Dependability: A very important criterion for fish water generators is reliable/dependable operation. It is critical that these units operate reliably for many years into the future.
2. Power Production/Generator Efficiency: A replacement generator should be able operate at a reasonable overall efficiency and if uprated shall be able to operate at a high power output.
3. Cost: Cost will be considered separately from other criteria, but is an important criterion. The units are not required for power production but for fish passage. The value of fish passage cannot be measured quantitatively since it is not a measurable item so no economic study will be performed.

6.1.8 CONSTRAINTS

The physical configuration of the generator stator and rotor prevent large-scale alteration of the unit configuration. A change to the generator design would require significant changes to the structures within the powerhouse and is impractical.

6.2 GENERATOR ALTERNATIVES

The following five alternatives were developed for consideration and will be evaluated to determine how well each satisfies the criteria and stays within the constraints outlined above.

Alternative G1 – Do nothing. In this alternative, no corrective action except continued operation and maintenance is considered.

Alternative G2 – Overhaul. In this alternative, perform generator disassembly, inspect, clean and test the rotor and stator inspection, repair the stator and rotor as needed. This alternative would also include the option for reinsulating the field poles based upon the results of the testing.

Alternative G3 – Rewind of Fish Unit 2, overhaul Fish Unit 1. In this alternative, perform generator disassembly, rotor cleaning, inspection, testing, alignment and reassembly for Fish Unit 1. Perform stator winding replacement for Fish Unit 2. This alternative would also include the option for reinsulating field poles based upon the results of the testing.

Alternative G4 – Rewind both units. In this alternative, perform generator disassembly, rotor cleaning, inspection, testing, stator winding replacement, alignment and reassembly. This alternative would also include the option for reinsulating the field poles based upon the results of the testing.

Alternative G5 – Rewind and replace core for both units. In this alternative, replacing the core is added to the scope of Alternative C. This change allows the circularity, plumb, and concentricity of the core to be improved. This alternative would also include the option for reinsulating the field poles based upon the results of the testing.

Alternatives G3, G4, and G5 require the following efforts:

- Mobilization and Demobilization: This item is required to in order for the contractor on site to perform the work.
- Lead Abatement, Asbestos, and Painting: This item is required to ensure a safe working environment.
- Disassembly, Reassembly, and Testing: All alternatives will require disassembly, reassembly, and testing of the units. In particular, effort would be extended to capture vibration data for the generator prior to disassembly to baseline and ensure improvements.
- Both of the thrust bearing coolers will be replaced with new internal coolers.

- Base Mechanical Work: There are many mechanical items that will be addressed. Examples include cleaning, inspection, consumable replacement, on-site machining, and miscellaneous testing and welding.
- Base Electrical Work: There are a number of electrical items that will be addressed. Examples include electrical testing, conduit, and cabling.

A cost for each of these items is included for each alternative.

Discussed below are the design alternatives for each major piece of equipment associated with the fish attraction water units under each alternative (above and beyond the efforts listed above). For each alternative, the advantages and disadvantages are discussed to assist in the evaluation process for selecting the preferred alternative. Unless specifically noted, the alternatives apply to both fish attraction water units. After a discussion of each piece of major equipment, the schedule is considered for each alternative. Table 12 shows the alternatives and major pieces of equipment in tabular format.

Table 12. Summary of Actions in Each Alternative

Action	Alternative				
	G1	G2	G3	G4	G5
Inspect, clean and test rotor windings	-	X	X	X	X
Inspect, clean and test stator winding – F1	-	X	X	-	-
Inspect, clean and test stator winding – F2	-	X	-	-	-
Repair stator and rotor Unit 1	-	X	X	-	-
Repair stator and rotor Unit 2	-	X	-	-	-
Supply and install new stator winding Unit 1	-	-	-	X	X
Supply and install new stator winding Unit 2	-	-	X	X	X
Supply and install new cores	-	-	-	-	X
Reinsulate field poles	-	O	O	O	O

NOTE: X – Action to be included in the identified alternative

O – Action to be optionally included in the identified alternative, pending test results

6.2.1 ALTERNATIVE G1 – Do Nothing

6.2.2 DESCRIPTION OF WORK TO BE PERFORMED

Under this alternative, no corrective action is taken to improve the life expectancy of key components of the generators.

6.2.3 PERFORMANCE OF ALTERNATIVE AGAINST CRITERIA

As there are no corrective actions associated with this alternative, none of the project criteria are met by choosing it. No improvement in anticipated stator winding forced outage rates are likely nor could be attributed to this alternative

6.2.4 COST ESTIMATE FOR ALTERNATIVE

There is no capital cost in choosing this alternative.

6.2.5 ALTERNATIVE G2 – OVERHAUL

6.2.6 DESCRIPTION OF WORK TO BE PERFORMED

While the unit is disassembled, the rotor and stator windings are cleaned and inspected. Focus during the cleaning and inspection will be on the end turns of the stator winding and the rotor poles and inter-pole connectors. Testing will be performed on the field winding and the stator winding to ensure that they are fit to return to service with a reasonable life expectancy. If the rotor winding testing indicates severely

deteriorated conditions, rotor pole refurbishment may be undertaken to establish effective insulation with a long life expectancy.

6.2.7 PERFORMANCE OF ALTERNATIVE AGAINST CRITERIA

Stator winding failure risk and life expectancy should both improve as a result of thorough cleaning and repairs, and better understanding of life expectancy and condition may be gained through testing. Rotor winding condition may also be improved and better assessed as well as a result of this effort, although condition will not be improved greatly without full refurbishment of the rotor poles. Depending upon test results, it is possible that rotor pole refurbishment may be warranted. In this case, life expectancy for the rotor poles would be greatly improved.

6.2.8 COST ESTIMATE FOR ALTERNATIVE

The cost estimate for Alternative B was derived from historical data from Hills Creek Turbine and Generator Replacement contract. It is assumed that one unit per year can be accomplished, which establishes a two year construction period. The cost estimate includes Contractor construction costs and escalation.

Fish Unit Alternative G2 Cost Estimate: \$420,000

6.2.9 ALTERNATIVE G3 – REWIND OF FISH UNIT 2, OVERHAUL FISH UNIT 1

6.2.10 DESCRIPTION OF WORK TO BE PERFORMED

In this alternative, a rewind of Fish Water Unit 2 is performed. This will include full disassembly, removal of the existing stator winding, cleaning/inspection/testing of the stator core, furnishing and installing the stator winding, acceptance testing, miscellaneous electrical work, and assembly and alignment. Fish Water unit 1 is overhauled, to include cleaning, inspections, repair of corona damage, and testing. Rotor pole refurbishment may be necessary for one or both units, depending upon test and inspection results.

6.2.11 PERFORMANCE OF ALTERNATIVE AGAINST CRITERIA

By rewinding the stator for Fish Water Unit 2, there would be a decrease in risk of stator winding failure for this unit when compared to present conditions. By thoroughly cleaning and inspecting the unit, risk of future failure may be reduced compared to present conditions.

6.2.12 COST ESTIMATE FOR ALTERNATIVE

The cost estimate for Alternative G3 was derived from historical data from Hills Creek Turbine and Generator Replacement contract. It is assumed that one unit per year can be accomplished, which establishes a two year construction period. The cost estimate includes Contractor construction costs and escalation.

Fish Unit Alternative G3 Cost Estimate: \$2,140,000

6.2.13 ALTERNATIVE G4 – REWIND BOTH UNITS

6.2.14 DESCRIPTION OF WORK TO BE PERFORMED

In this alternative, a rewind of both stator windings is performed. This will include full disassembly, removal of the existing stator winding, cleaning/inspection/testing of the stator core, furnishing and installing the stator winding, acceptance testing, miscellaneous electrical work, and assembly and alignment.

6.2.15 PERFORMANCE OF ALTERNATIVE AGAINST CRITERIA

By rewinding both stators, there would be a decrease in risk of stator winding failure for both units when compared to present conditions. The incremental risk of failure being reduced for Fish Water Unit 1 versus a repair of the end winding is likely not substantial given the fact that it is a relatively new winding.

6.2.16 COST ESTIMATE FOR ALTERNATIVE

The cost estimate for Alternative G4 was derived from historical data from Hills Creek Turbine and Generator Replacement contract. It is assumed that one unit per year can be accomplished, which establishes a two year construction period. The cost estimate includes Contractor construction costs and escalation.

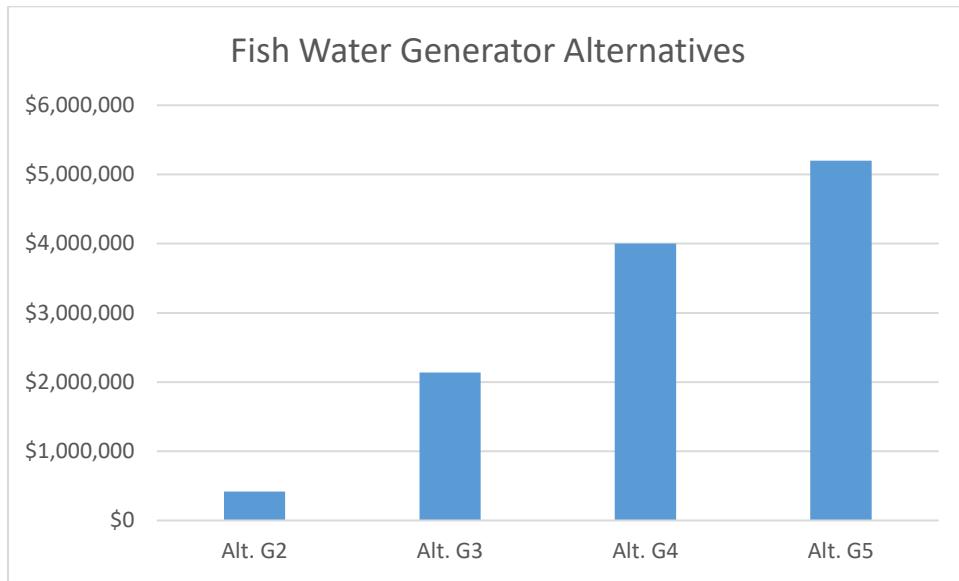
Fish Unit Alternative G4 Cost Estimate: \$4,000,000

6.2.17 ALTERNATIVE G5 – REWIND AND REPLACE CORE FOR BOTH UNITS

6.2.18 DESCRIPTION OF WORK TO BE PERFORMED

In this alternative, all of the steps taken in Alternative G3 are taken, with the addition of core replacement being included. The replacement of the stator core includes removal of the existing core, frame inspection, manufacturing and testing of new core laminations, assembly of the new core including clamping assemblies, and testing of the stator core before installation of the new stator winding.

6.2.19 PERFORMANCE OF ALTERNATIVE AGAINST CRITERIA


As all of the corrective actions taken under the alternative for stator rewind are taken here as well, the performance for this alternative are similar. The additional performance gained in this case is a potentially increased lifespan for the stator core. However, no issues with the current stator cores have been determined and therefore the amount of risk being reduced is minimal. Therefore, the incremental increase in performance of this alternative against the criteria is very small when compared to the stator rewind alternative.

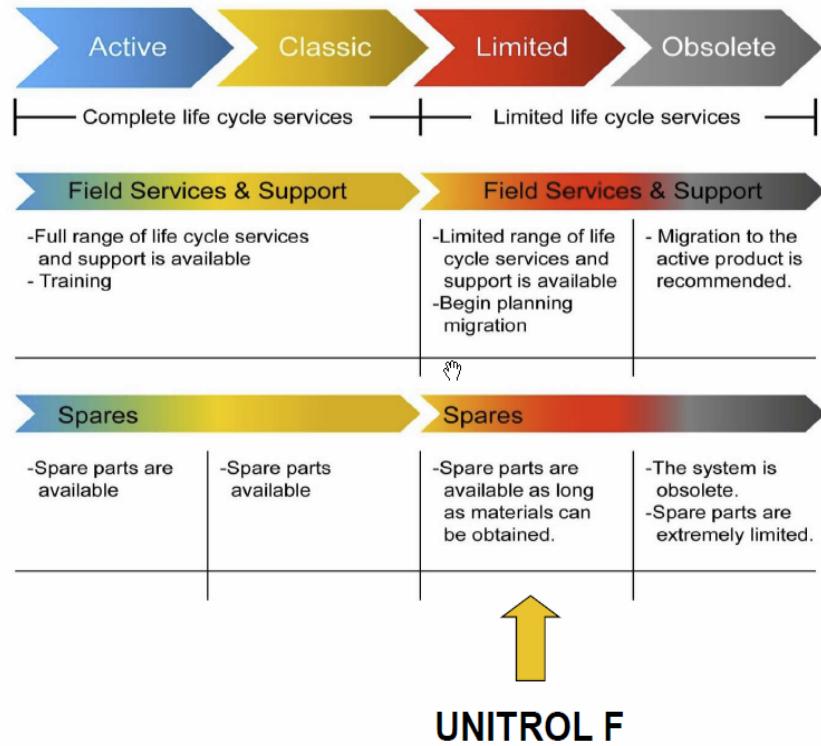
6.2.20 COST ESTIMATE FOR ALTERNATIVE

The cost estimate for Alternative G5 was derived from historical data from Hills Creek Turbine and Generator Replacement contract. It is assumed that one unit per year can be accomplished, which establishes a two year construction period. The cost estimate includes Contractor construction costs and escalation.

Fish Unit Alternative G5 Cost Estimate: \$5,200,000

**Table 13 – Summary of Alternative Performance, and Cost
Fish Attraction Water Unit generator Alternative Evaluations**

7 EXCITATION SYSTEM ENGINEERING


7.1 GENERAL DISCUSSION

7.1.1 EXISTING EXCITATION SYSTEM

The original rotating excitation systems were replaced with the UNITROL F Series solid state excitation systems by ABB in 2000. While the excitation systems are in satisfactory condition, replacement parts are difficult to locate or are no longer available.

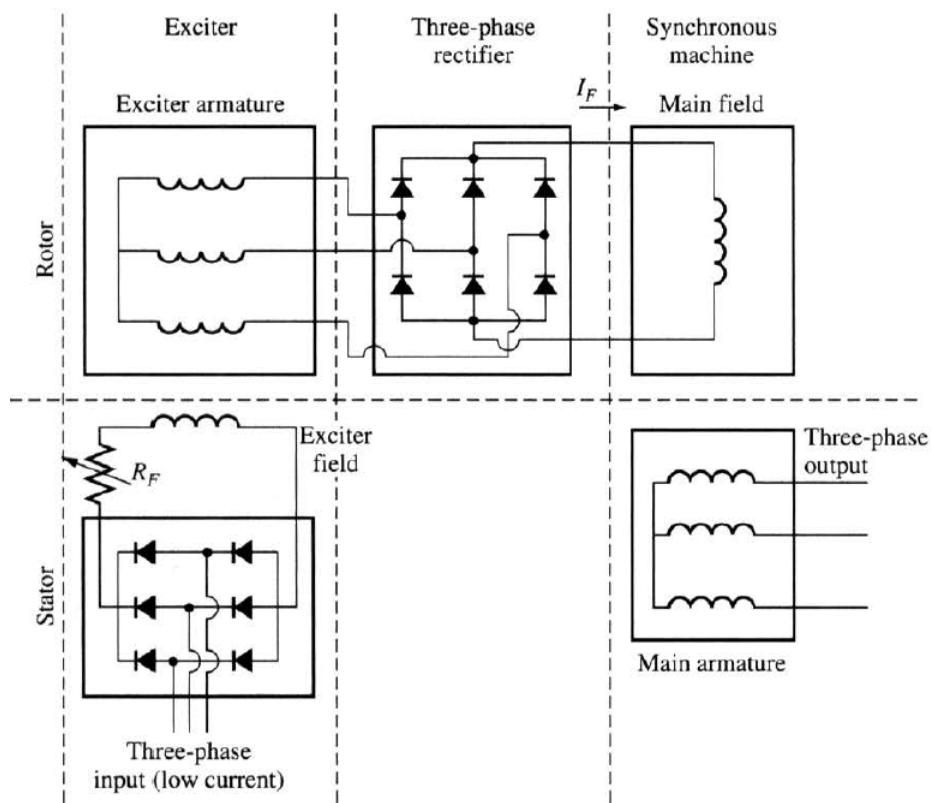
From the beginning of 2017, UNITROL F system is in the limited phase of its life cycle. ABB cannot guarantee life cycle services and support due to scarcity of electronic components and limited technical know-how.

Based on the current status of a customer's installed based, ABB recommends to begin migration planning to replacement the UNITROL F model.

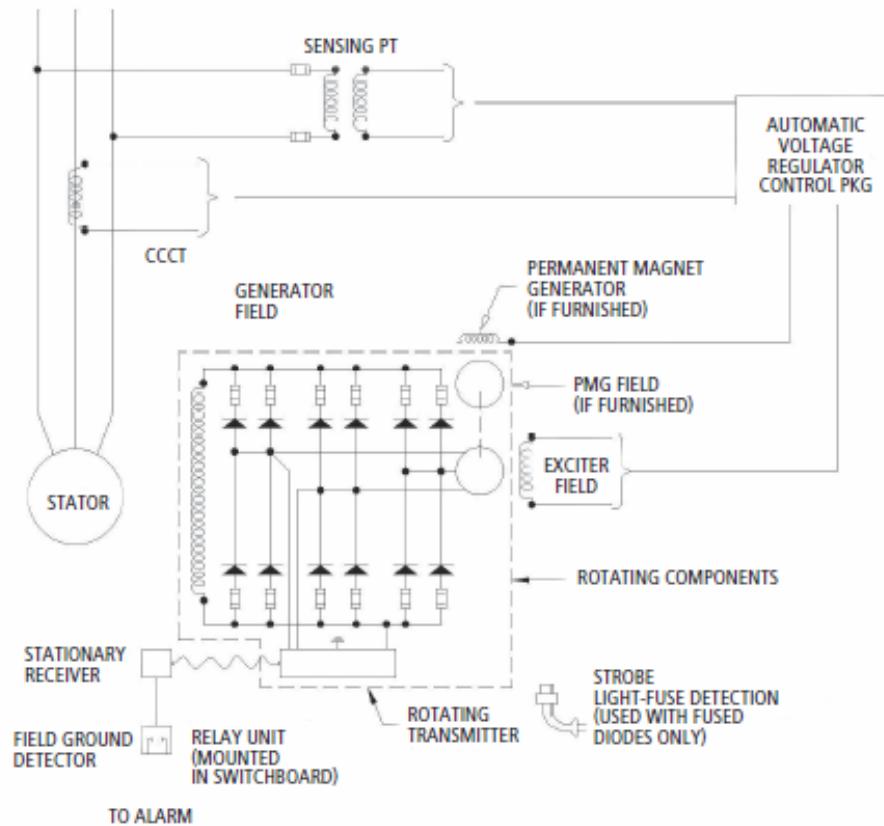
Figure 23 – ABB Excitation System Life Cycle Cost Management

Note: The above figure was obtained from ABB web site.

7.1.2 RETROFIT EXISTING EXCITATION SYSTEM


This option is to replace the existing automatic voltage regulators (AVRs) with new AVRs to improve voltage control and faster response time. The existing thyristor bridges (SCRs), power potential transformers (PPTs), and the power feeders (AC bus tap and DC leads) will be retained.

7.1.3 DIGITAL STATIC EXCITATION SYSTEM


This option is to replace the existing excitation system with digital static excitation that will include new automatic voltage regulators (AVRs), new thyristor bridges (SCRs), new power potential transformers (PPTs), and new power feeders (AC bus tap and DC leads).

7.1.4 BRUSHLESS EXCITATION SYSTEM

This option is to replace the existing excitation system with a brushless excitation system. A brushless exciter, a low 3-phase current is rectified and used to supply the field circuit of the exciter located on the stator. The output of the exciter's armature circuit on the rotor is rectified and used as the field current of the main machine.

Brushless Exciter Schematic Diagrams

Functional diagram of exciter with Permanent Magnet Generator.

Brushless excitation provides increased reliability and reduced maintenance costs.

The Permanent Magnet Generator (PMG) supplies high frequency AC power to the voltage regulator. The voltage regulator receives voltage and reactive current feedback provided by potential and current transformers to provide voltage and reactive current feedback. Comparing these signals to a reference setpoint in the voltage regulator, the voltage regulator provides a controlled variable DC current to the stationary field of the rotating exciter. With its stationary field and rotating armature, the exciter generates three phase high frequency AC output. This output is rectified by the rotating rectifiers. This DC current is fed via conductors to the center of the rotor shaft and carried by a special lead bar in the hollow shaft area.

under the bearing journal which is then applied to the main generator field winding. The rotating rectifier is a three phase full wave diode bridge. 100% diode redundancy provides 100% of full rating with a diode out of service.

For parallel redundancy, 100% rated redundant diodes with indicating fuses in series connected in parallel paths permit full load operation even with one diode out of service caused by a failure to a shorted condition. Open fuses are detected during operation by using the strobe light furnished.

Field ground detection is provided without slip rings by means of a transmitter mounted on the diode wheel assembly. A light signal is sent across an airgap to a stationary receiver and relay to indicate presence of a ground.

7.2 EXCITATION SYSTEM CRITERIA AND CONSTRAINTS

7.2.1 CRITERIA

Reliable operation of the excitation systems as defined by:

- a. Reliability/Dependability: A very important criterion for fish water units is reliable/dependable operation. It is critical that these units operate reliably for many years into the future.
- b. Spare Parts Availability: Replacement parts are difficult to locate or are no longer available.
- c. Maintenance: Collector rings, brushes, and brush holders require maintenance.

7.2.2 CONSTRAINTS

The physical space limitation at the powerhouse prevents larger foot print of the new excitors.

7.3 EXCITATION SYSTEM ALTERNATIVES

7.3.1 ALTERNATIVES E1 – BASE CASE (Do Nothing)

DESCRIPTION OF WORK TO BE PERFORMED

Under this alternative, no corrective action is taken to improve the life expectancy of key components of the excitors. This alternative has the highest risk of unscheduled outages. In addition, because of the unavailability of parts for the existing exciter and voltage regulator, outages will be of a longer duration when they occur as parts are rebuilt or in some way replaced.

7.3.2 PERFORMANCE OF ALTERNATIVE AGAINST CRITERIA

As there are no corrective actions associated with this alternative, none of the project criteria are met by choosing it. No improvement in anticipated exciter forced outage rates are likely nor could be attributed to this alternative

7.3.3 COST ESTIMATE FOR ALTERNATIVE

There is no capital cost in choosing this alternative.

7.3.4 ALTERNATIVE E2 – REPLACE WITH NEW EXCITER CONTROL

DESCRIPTION OF WORK TO BE PERFORMED

This alternative is to replace the existing excitation controls with new excitation controls.

7.3.5 PERFORMANCE OF ALTERNATIVE AGAINST CRITERIA

This option retains the existing Power Potential Transformers (PPTs) and thyristor bridges. This could adversely impact future reliability of the excitation systems.

7.3.6 COST ESTIMATE FOR ALTERNATIVE

The cost to replace a digital excitation controls is estimated to be \$250,000.

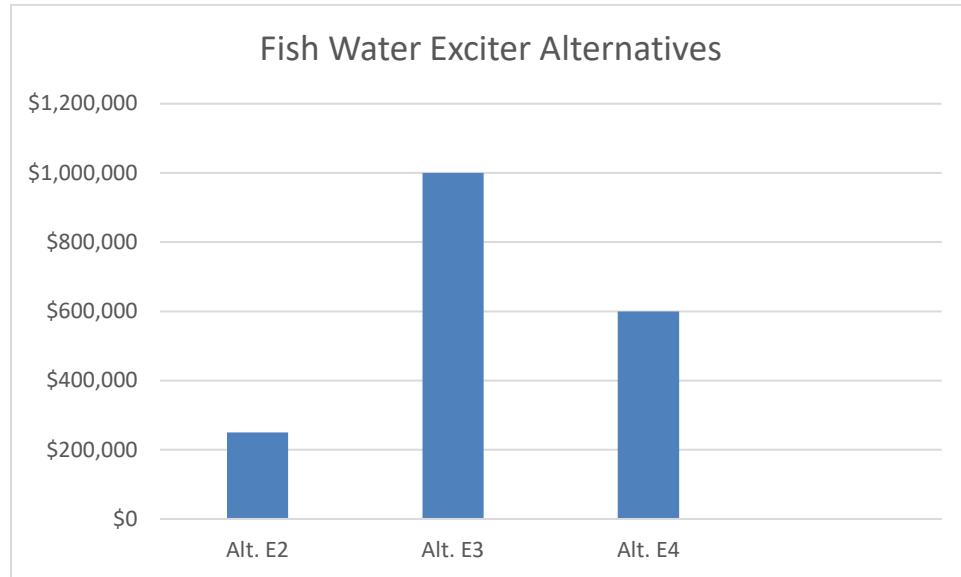
7.3.7 ALTERNATIVE E3 – REPLACE WITH NEW STATIC EXCITATION SYSTEM4

This alternative is to replace the existing excitation systems with new modern digital static excitation systems. This would include replacing the excitation power potential transformers (PPTs) and the excitation automatic voltage regulators (AVRs) with fully redundant system (redundant controls and

redundant rectifier bridges). This will restore the excitation system reliability and eliminate the spare part problems.

7.3.8 COST ESTIMATE FOR ALTERNATIVE

The cost to replace a digital excitation controls is estimated to be \$1,000,000.


7.3.9 ALTERNATIVE E4 – REPLACE WITH BRUSHLESS EXCITATION SYSTEM

This alternative is to replace the existing excitation system with a brushless excitation system. Brushless excitation system provides high reliability through elimination of brushes, collector rings and carbon dust. The brushless system is being recommended because the carbon fiber dust from previous installations has caused electrical issues. The main component would include brushless exciter stator, brushless exciter rotor, and brushless exciter diode wheel. This will eliminate the dust problems.

7.3.10 COST ESTIMATE FOR ALTERNATIVE

The cost to replace entire excitation systems with brushless excitation systems is estimated to be \$600,000.

7.4 SUMMARY OF FISH ATTRACTION WATER UNIT EXCITER ALTERNATIVE EVALUATIONS

8 COMBINED TURBINE, GENERATOR AND EXCITER ALTERNATIVES

8.1 REMOVAL OF SOME SUB-ALTERNATIVES

8.1.1 GENERAL

This section will combine the generator and turbine sub-alternatives into high level fish water units rehabilitation alternatives.

In order to provide the best evaluation of alternatives for the Phase 1A report, alternatives with little merit will be eliminated from future consideration. This allows the PDT to focus effort on the alternatives which demonstrate the most promise. For elimination purposes, sub-alternatives will be evaluated on the criteria established in Turbine Section 5, Paragraph 5.1.1 Criteria and Generator Section 6, Paragraph 6.2.1, Criteria.

Using the generator and turbine evaluation criteria listed above the following generator and the turbine sub-alternatives were removed from consideration due to failing the primary goal of the rehabilitation which is reliability/dependability criteria.

8.1.2 REMOVAL OF THE 'OPERATE TO FAILURE' SUB-ALTERNATIVE

Generator sub-alternative 1 and Turbine sub-alternative 1, Operate to failure in both cases would operate the units until the failure of some component. A generator failure scenario would most likely be the failure of a coil which would put the unit out of service for an extended period of time. This kind of failure is repairable but the unit would still not be operable during the repair. A turbine failure would put the unit out of service for an extended period of time. Many turbine failure scenarios would be repairable but the unit would not be operable during the repair process. Additionally, if one unit failed and required several months to a year to repair the fish attraction system would be at high risk since there would be no redundancy for that period of time. The discharge from one unit is not sufficient to meet the requirements of the system and there is the possibility that the second unit could fail during this time. The total discharge from the new AWS backup system is equivalent to about one half the discharge from one fish unit and would not be able to supply the required flow. It should also be noted that the new AWS backup system has not been tested yet and more importantly has not been operated with one of the fish water turbines to prove that discharges from two very different sources are capable of comfortably merging and providing flow to the three fish entrances. These scenarios would fail the most important criteria which is the reliability/dependability of the turbine generator unit. Therefore, the Turbine and generator Sub-alternatives for doing nothing is removed from any serious consideration.

8.1.3 REMOVAL OF THE 'GENERATOR LIMITED REHABILITATION' SUB-ALTERNATIVE

Generator Sub-alternative 2 is a Limited Rehabilitation which includes inspecting, cleaning and testing the stator winding and rotor poles. This generator rehabilitation alternative is a better sub-alternative, however the generator still has 20 years of operating life used up. The possibility of a generator failure is higher than it would be with a newly rewound unit. The same scenario that is described above in paragraph 7.1.2 would apply here. The most important criteria reliability/dependability is still not addressed with this sub-alternative so it will be removed from consideration.

8.1.4 REMOVAL OF THE 'CONVERSION TO FIXED BLADE OPERATION' SUB-ALTERNATIVE

Turbine Sub-alternative 2 is conversion of the turbine units to fixed blade propeller operation. This turbine alternative would require the modification of the existing turbine to run as a fixed blade unit. Since this would be a conversion for long term use the suggested method to fix the blades would be by pinning them to the turbine hub. Additionally, oil would be removed from the hub. This is a permanent conversion with no option to revert back to Kaplan function at a later date. Most importantly, this rehabilitation would not address the continued blade cracks that these units have had and which shows an inherent weakness in the design of these runner blades. This deficiency alone is enough to disqualify

this sub-alternative. Additionally though, since this is a conversion of the turbine runner only and since the unit is not normally disassembled to convert it to fixed blade, it would not address other mechanical components of the unit. For instance the bearings, bearing coolers, shaft sleeve, packing box, generator air coolers would not be rehabilitated. For this reason the reliability/dependability issue would not be addressed appropriately. Also, fixed blade operation of the existing turbine runner may reduce the flexibility of the unit and therefore may cause a deficiency in the operation of the fish attraction system. The current fish water turbines have a range of operation of about 700 cfs which would be difficult for a propeller runner to meet. For these reliability/dependability and performance issues this sub-alternative will be removed from consideration.

8.1.5 REMOVAL OF THE ‘REHABILITATION OF EXISTING UNITS’ SUB-ALTERNATIVE

Turbine Sub-alternative 3 is the rehabilitation of the existing units similar to what is being performed at John Day and some units on the Lower Snake. This proposal does positively affect the dependability/reliability of the units. However, although better than turbine sub-alternative 1 and 2 it still does not address the blade cracks that these units have and does not match what could be done with a full rehabilitation with the installation of new turbine runners. Since this alternative does not really match what could be accomplished with a complete rehabilitation it also will be removed from consideration.

8.2 HIGH LEVEL ALTERNATIVES

For the high level alternatives the generator Sub-alternatives 3 and 4 will be matched with the appropriate turbine alternatives 4-8.

8.2.1 HIGH LEVEL ALTA, REPLACE TURBINE WITH KAPLAN RUNNER, SAME OUTPUT AS EXISTING

Turbine: The turbine runner would be replaced with new runner that would have the same rated output as the current existing turbine runner. The turbine and generator shaft will be retained. The wicket gates may be either refurbished or new wicket gate provided. All turbine bushings will be replaced with self-lubricating bushings and the grease system will be removed. New packing boxes and packing sleeves will be provided. Stationary components will be re-machined to level and plumb conditions. The discharge ring will be overlaid with stainless steel to be more resistant to cavitation damage. The upper and lower guide bearing pads, the turbine guide bearings and the thrust bearing shoes will be rebabbited. The thrust bearing runner and collar will be inspected. New generator air coolers will be installed and thrust bearing internal cooler will be removed and external coolers will be installed. The turbine/generator unit will be realigned.

Generator: The generator will be rewound to its existing capacity.

Exciter: The exciter system will be replaced with the brushless excitation system

1. Reliability/Dependability, Medium
2. Increased Discharge, No increase in discharge
3. Unit Flexibility, Moderate
4. Power Production, No increase in power production
5. Cost, Turbine: \$1.546 million per unit
 - Misc. Mechanical: \$6.07 million per unit
 - Generator: \$2.0 million per unit
 - New Stator Core: \$0.6 per unit
 - Rotor Pole Refurbishment: \$0.3 per unit
 - Exciter: \$0.3 million per unit
 - Total : \$21.793 million bot units
6. Environmental Risk, Moderate environmental risk due to oil-filled hub
7. Frequency of Maintenance, No increase in maintenance
8. Outage Duration, Medium outage duration

9. Ease of Construction, Medium ease of construction

8.2.2 HIGH LEVEL ALT B, REPLACE TURBINE WITH PROPELLER RUNNER, SAME RATED OUTPUT AS EXISTING

Turbine: The turbine runner would be replaced with new fixed blade propeller-type runner that would have the same rated output as the existing units. The turbine and generator shaft will be retained. The static oil pressure system and the blade servo would be removed and other conversions would be performed to convert the propeller operation. Basically, all oil (high pressure and static) is removed from the two units. The wicket gates may be either refurbished or new wicket gate provided. All turbine bushings will be replaced with self-lubricating bushings and the grease system will be removed. New packing boxes and packing sleeves will be provided. Stationary components will be re-machined to level and plumb conditions. The discharge ring will be overlaid with stainless steel to be more resistant to cavitation damage. The upper and lower guide bearing pads, the turbine guide bearings and the thrust bearing shoes will be rebabbited. The thrust bearing runner and collar will be inspected. New generator air coolers will be installed and thrust bearing internal cooler will be removed and external coolers will be installed. The turbine/generator unit will be realigned.

Generator: The generator will be rewound to its existing capacity.

Exciter: The exciter system will be replaced with the brushless excitation system

1. Reliability/Dependability, More reliable than either the oil-filled and oil-free hub sub-alternatives
2. Increased Discharge, No Increase in discharge
3. Unit Flexibility, Moderate.
4. Power Production, No Increase in power production
5. Cost, Turbine: \$1.013 million per unit
 - Misc. Mechanical: \$5.75 million per unit
 - Generator: \$2.0 million per unit
 - New Stator Core: \$0.6 per unit
 - Rotor Pole Refurbishment: \$0.3 per unit
 - Exciter: \$0.3 million per unit
 - Total: \$20.086 million both units
6. Environmental Risk, Very Low environmental risk due to no oil in hub or blade servo
7. Frequency of Maintenance, Less maintenance is expected than the other options
8. Outage Duration, Slightly shorter outage
9. Ease of Construction, Expected less assembly due to no Kaplan internal linkages and no blade servo system.

8.2.3 HIGH LEVEL ALT C, REPLACE TURBINE WITH OIL-FILLED KAPLAN RUNNER, UP RATE UNIT TO SHAFT LIMIT

Turbine: The turbine runner would be replaced with new Kaplan-type runner that would be uprated to the shaft limit. The turbine and generator shaft will be retained. The wicket gates may be either refurbished or new wicket gate provided. All turbine bushings will be replaced with self-lubricating bushings and the grease system will be removed. New packing boxes and packing sleeves will be provided. Stationary components will be re-machined to level and plumb conditions. The discharge ring will be overlaid with stainless steel to be more resistant to cavitation damage. The upper and lower guide bearing pads, the turbine guide bearings and the thrust bearing shoes will be rebabbited. The thrust bearing runner and collar will be inspected. New generator air coolers will be installed and thrust bearing internal cooler will be removed and external coolers will be installed. The turbine/generator unit will be realigned.

Generator: The generator will be rewound to its uprated capacity.

Exciter: The exciter system will be replaced with the brushless excitation system.

1. Reliability/Dependability, Medium
2. Increased Discharge, Increase in discharge
3. Unit Flexibility, Best Flexibility
4. Power Production, Increase in power production
5. Cost, Turbine: \$1.546 million per unit
 - Misc. Mechanical: \$6.07 million per unit
 - Generator: \$2.0 million per unit
 - New Stator Core: \$0.6 per unit
 - Rotor Pole Refurbishment: \$0.3 per unit
 - Exciter: \$0.3 million per unit
 - Generator Uprate Study: \$0.4 million
 - Total: \$22.193 million both units
6. Environmental Risk, Moderate environmental risk due to oil-filled hub
7. Frequency of Maintenance, No increase in maintenance
8. Outage Duration, Medium outage duration
9. Ease of Construction, Medium ease of construction

8.2.4 HIGH LEVEL ALT D, REPLACE TURBINE WITH OIL-FREE KAPLAN RUNNER, UPRATE UNIT TO SHAFT LIMIT

Turbine: The turbine runner would be replaced with new Kaplan-type runner with an oil-free hub that would be uprated to the shaft limit. The turbine and generator shaft will be retained. The static oil pressure system would be removed from the shaft and other conversions would be performed to convert the hub to oil-free operation. The wicket gates may be either refurbished or new wicket gate provided. All turbine bushings will be replaced with self-lubricating bushings and the grease system will be removed. New packing boxes and packing sleeves will be provided. Stationary components will be remachined to level and plumb conditions. The discharge ring will be overlaid with stainless steel to be more resistant to cavitation damage. The upper and lower guide bearing pads, the turbine guide bearings and the thrust bearing shoes will be rebabbited. The thrust bearing runner and collar will be inspected. New generator air coolers will be installed and thrust bearing internal cooler will be removed and external coolers will be installed. The turbine/generator unit will be realigned.

Generator: The generator will be rewound to its uprated capacity; the existing stator core will be replaced with a new core; the existing rotor field poles may require refurbishment.

Exciter: The exciter system will be replaced with the brushless excitation system

1. Reliability/Dependability, Lowest Reliability due to water in hub,
Highest Risk due to minimal operating experience in industry.
2. Increased Discharge, Increase in discharge
3. Unit Flexibility, Possible loss of flexibility
4. Power Production, Increase in power production
5. Cost, Turbine: \$1.792 million per unit
 - Misc. Mechanical: \$6.07 million per unit
 - Generator: \$2.0 million per unit
 - New Stator Core: \$0.6 per unit
 - Rotor Pole Refurbishment: \$0.3 per unit
 - Exciter: \$0.3 million per unit
 - Generator Uprate Study: \$0.4 million
 - Total: \$22.685 million both units
6. Environmental Risk, Low environmental risk due to oil-free hub
7. Frequency of Maintenance, No increase in maintenance

8. Outage Duration, Medium
9. Ease of Construction, Medium

8.2.5 HIGH LEVEL ALT E, REPLACE TURBINE WITH PROPELLER RUNNER, UPRATE UNIT TO SHAFT LIMIT

Turbine: The turbine runner would be replaced with new fixed blade propeller-type runner that would be uprated to the shaft limit. The turbine and generator shaft will be retained. The static oil pressure system and the blade servo would be removed and other conversions would be performed to convert the propeller operation. Basically, all oil (high pressure and static) is removed from the two units. The wicket gates may be either refurbished or new wicket gate provided. All turbine bushings will be replaced with self-lubricating bushings and the grease system will be removed. New packing boxes and packing sleeves will be provided. Stationary components will be re-machined to level and plumb conditions. The discharge ring will be overlaid with stainless steel to be more resistant to cavitation damage. The upper and lower guide bearing pads, the turbine guide bearings and the thrust bearing shoes will be rebabbited. The thrust bearing runner and collar will be inspected. New generator air coolers will be installed and thrust bearing internal cooler will be removed and external coolers will be installed. The turbine/generator unit will be realigned.

Generator: The generator will be rewound to its uprated capacity, the existing stator core will be replaced with a new core; the existing rotor field poles may require refurbishment.

Exciter: The exciter system will be replaced with the brushless excitation system

10. Reliability/Dependability, More reliable than either the oil-filled and oil-free hub sub-alternatives
11. Increased Discharge, Increase in discharge
12. Unit Flexibility, Will lose flexibility because blades no longer are rotatable and operating range too high.
13. Power Production, Increase in power production
14. Cost, Turbine: \$1.013 million per unit
 - Misc. Mechanical: \$5.75 million per unit
 - Generator: \$2.0 million per unit
 - Generator: \$2.0 million per unit
 - New Stator Core: \$0.6 per unit
 - Rotor Pole Refurbishment: \$0.3 per unit
 - Exciter: \$0.3 million per unit
 - Generator Uprate Study: \$0.4 million
 - Total: \$20.486 million both units
15. Environmental Risk, Very Low environmental risk due to no oil in hub or blade servo
16. Frequency of Maintenance, Less maintenance is expected than the other options
17. Outage Duration, Slightly shorter outage
18. Ease of Construction, Expected less assembly due to no Kaplan internal linkages and no blade servo system.

8.2.6 HIGH LEVEL ALT F, REPLACE TURBINE WITH OIL-FILLED KAPLAN RUNNER, UPRATE UNIT ABOVE SHAFT LIMIT

Turbine: The turbine runner would be replaced with new Kaplan-type runner that would be uprated to a value higher than the shaft limit. The turbine and generator shaft will be retained. The wicket gates may be either refurbished or new wicket gate provided. All turbine bushings will be replaced with self-lubricating bushings and the grease system will be removed. New packing boxes and packing sleeves will be provided. Stationary components will be re-machined to level and plumb conditions. The discharge ring will be overlaid with stainless steel to be more resistant to cavitation damage. The upper and lower guide bearing pads, the turbine guide bearings and the thrust bearing shoes will be rebabbited. The thrust bearing runner and collar will be inspected. New generator air coolers will be installed and

thrust bearing internal cooler will be removed and external coolers will be installed. The turbine/generator unit will be realigned.

Generator: The generator will be rewound to its uprated capacity, the existing stator core will be replaced with a new core; the existing rotor field poles may require refurbishment.

Exciter: The exciter system will be replaced with the brushless excitation system

1. Reliability/Dependability, Medium
2. Increased Discharge, Discharge will increase
3. Unit Flexibility, Loss of flexibility due to discharge being too high
4. Power Production, Highest Increase in power production, but not possible due to cavitation limits exceeded.
5. Cost, Turbine: \$1.546 million per unit
 - Turbine Shaft Study: \$0.300
 - Misc. Mechanical: \$6.07 million per unit
 - Generator: \$2.0 million per unit
 - New Stator Core: \$0.6 per unit
 - Rotor Pole Refurbishment: \$0.3 per unit
 - Exciter: \$0.3 million per unit
 - Generator Uprate Study: \$0.4 million
 - Total: \$22.493 million both units
6. Environmental Risk, Moderate environmental risk due to oil-filled hub
7. Frequency of Maintenance, No increase in maintenance
8. Outage Duration, Medium outage duration
9. Ease of Construction, Medium ease of construction

8.2.7 HIGH LEVEL ALT G, REPLACE TURBINE WITH OIL-FREE KAPLAN RUNNER, UPRATE UNIT ABOVE SHAFT LIMIT

Turbine: The turbine runner would be replaced with new Kaplan-type runner with an oil-free hub that would be uprated to a value higher than the shaft limit. The turbine and generator shaft will be retained. The static oil pressure system would be removed from the shaft and other conversions would be performed to convert the hub to oil-free operation. The wicket gates may be either refurbished or new wicket gate provided. All turbine bushings will be replaced with self-lubricating bushings and the grease system will be removed. New packing boxes and packing sleeves will be provided. Stationary components will be re-machined to level and plumb conditions. The discharge ring will be overlaid with stainless steel to be more resistant to cavitation damage. The upper and lower guide bearing pads, the turbine guide bearings and the thrust bearing shoes will be rebabbited. The thrust bearing runner and collar will be inspected. New generator air coolers will be installed and thrust bearing internal cooler will be removed and external coolers will be installed. The turbine/generator unit will be realigned.

Generator: The generator will be rewound to its uprated capacity, the existing stator core will be replaced with a new core; the existing rotor field poles may require refurbishment.

Exciter: The exciter system will be replaced with the brushless excitation system

1. Reliability/Dependability, Lowest Reliability due to water in hub, Highest Risk due to minimal operating experience in industry time for this type of unit Increased 2. Discharge, Increase to highest discharge
2. Unit Flexibility, Loss of flexibility due to discharge being too high
3. Power Production, Increase to highest power production, but not possible due to cavitation limits exceeded.
4. Cost, Turbine: \$1.792 million per unit
 - Turbine shaft study: \$ 0.300
 - Misc. Mechanical: \$6.07 million per unit
 - Generator: \$2.0 million per unit

New Stator Core: \$0.6 per unit
Rotor Pole Refurbishment: \$0.3 per unit
Exciter: \$0.3 million per unit
Generator Uprate Study: \$0.4 million
Total: \$22.985 million both units

5. Environmental Risk, Low environmental risk due to oil-free hub
6. Frequency of Maintenance, No increase in maintenance
7. Outage Duration, Medium outage duration
8. Ease of Construction, Medium ease of construction

8.2.8 HIGH LEVEL ALT H, REPLACE TURBINE WITH PROPELLER RUNNER, UPRATE UNIT ABOVE SHAFT LIMIT

Turbine: The turbine runner would be replaced with new fixed blade propeller-type runner that would be uprated to a value higher than the shaft limit. The turbine and generator shaft will be retained. The static oil pressure system and the blade servo would be removed and other conversions would be performed to convert the propeller operation. Basically, all oil (high pressure and static) is removed from the two units. The wicket gates may be either refurbished or new wicket gate provided. All turbine bushings will be replaced with self-lubricating bushings and the grease system will be removed. A new packing boxes and packing sleeves will be provided. Stationary components will be re-machined to level and plumb conditions. The discharge ring will be overlaid with stainless steel to be more resistant to cavitation damage. The upper and lower guide bearing pads, the turbine guide bearings and the thrust bearing shoes will be re-babbited. The thrust bearing runner and collar will be inspected. New generator air coolers will be installed and thrust bearing internal coolers will be removed and external coolers will be installed. The turbine/generator unit will be realigned.

Generator: The generator will be rewound to its uprated capacity, the existing stator core will be replaced with a new core; the existing rotor field poles may require refurbishment.

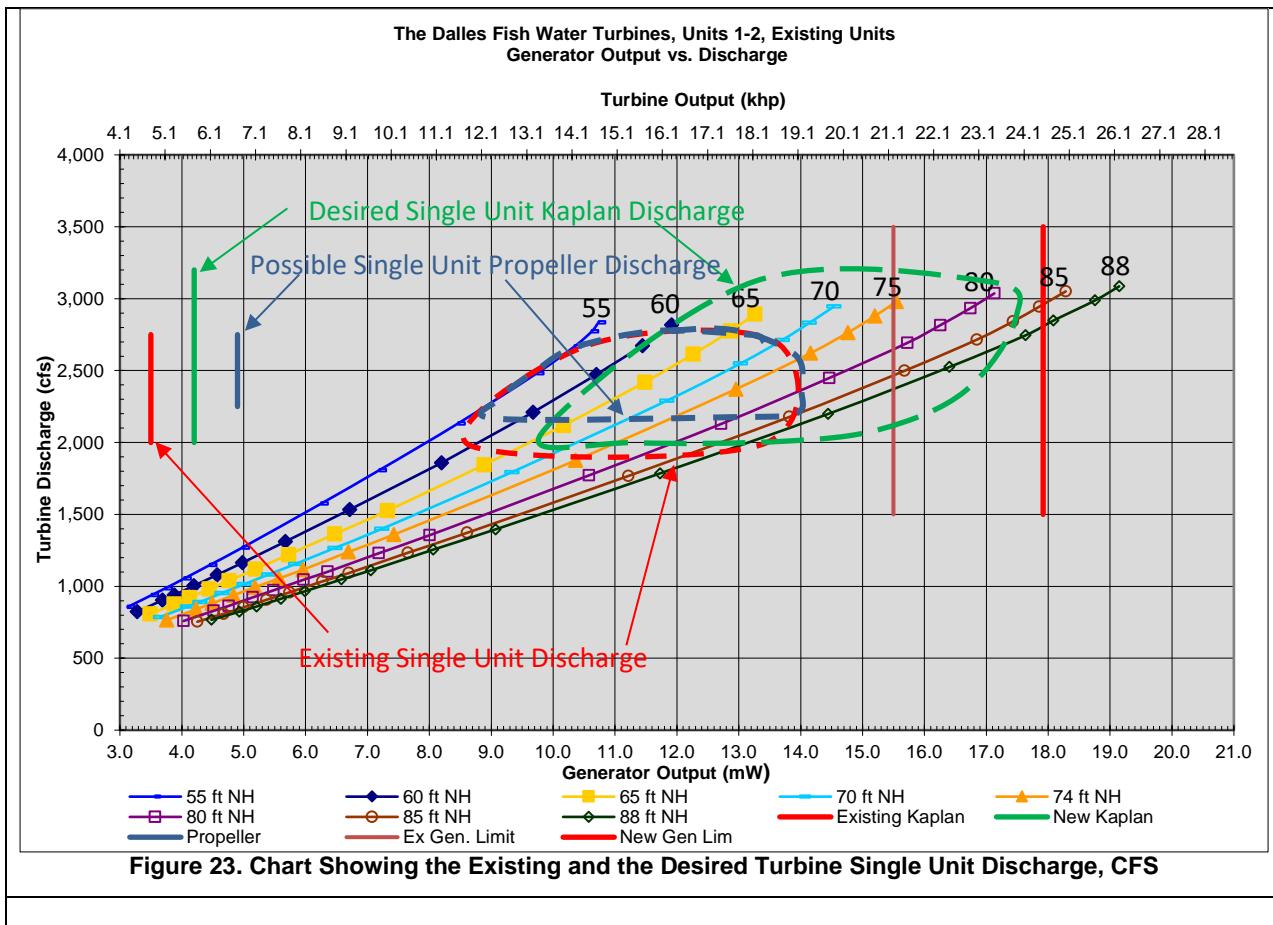
Exciter: The exciter system will be replaced with the brushless excitation system

1. Reliability/Dependability, More reliable than either the oil-filled and oil-free hub options
2. Unit Flexibility, Will lose flexibility because blades no longer are rotatable and operating range too high.
3. Increased Discharge, Increase to highest discharge
4. Power Production, Increase to highest power production, but not possible due to cavitation limits exceeded.
5. Cost, Turbine: \$1.013 million per unit
Turbine shaft study: \$0.300
Misc. Mechanical: \$5.75 million per unit
Generator: \$2.0 million per unit
New Stator Core: \$0.6 per unit
Rotor Pole Refurbishment: \$0.3 per unit
Exciter: \$0.3 million per unit
Generator Uprate Study: \$0.4 million
Total: \$20.786 million both units
6. Environmental Risk, Very Low environmental risk due to no oil in hub or blade servo
7. Frequency of Maintenance, Less maintenance is expected than the other options
8. Outage Duration, Slightly shorter outage due to removal of oil systems
9. Ease of Construction, Expected less assembly due to no Kaplan internal linkages and no blade servo system

8.3 ALTERNATIVE MATRIX

The following table is presented as a summary of the seven final high level alternatives with a qualitative assessment of their ability to meet the criteria mentioned in Section 5. The four main criteria shown on the right side of the table: reliability/dependability, unit operational flexibility, increased discharge and environmental risk and the other five criteria to a lesser extent were used to refine the list down to the recommended alternative and the next best alternative.

7.3 Criteria Matrix


Table 12. Criteria Matrix for Selection of the Replacement for the Fish Water Turbines

The Dalles Fish Water Turbines — Criteria Matrix										
Alternative	Ease of Construction	Outage Duration	Frequency of Maintenance	Cost	Power Production	Environmental Risk	Increased Discharge	Unit Operational Flexibility	Reliability/ Dependability	Rank
A Same as Existing	Medium	Medium	No Increase	\$21.78M	No Increase	Moderate	No Increase	Moderate	Reliable	3
B Propeller, No Uprate	Slightly Less Complex	Slightly Shorter	Low	\$20.09M	No Increase	Low	No Increase	Moderate	More Reliable	2
C Oil-Filled Kaplan, Small Uprate	Medium	Medium	No Increase	\$22.19M	Increase	Moderate	Increase	Best Flexibility	Reliable	1
D Oil-Free Kaplan, Small Uprate	Medium	Medium	No Increase	\$22.68M	Increase	Low	Increase	Possible Loss of Flexibility	Lowest Reliability/ Highest Risk	7
E Propeller, Small Uprate	Slightly Less Complex	Slightly Shorter	Low	\$20.49M	Increase	Low	Increase	Loss of Flexibility	More Reliable	4
F Oil-Filled Kaplan, Med. Uprate	Medium	Medium	No Increase	\$22.49M	Too High	Moderate	Highest Increase	Loss of Flexibility	Reliable	5
G Oil-Free Kaplan, Med. Uprate	Medium	Medium	No Increase	\$22.98M	Too High	Low	Highest Increase	Loss of Flexibility	Lowest Reliability/ Highest Risk	8
H Propeller, Medium Uprate	Slightly Less Complex	Slightly Shorter	Low	\$20.79M	Too High	Low	Highest Increase	Loss of Flexibility	More Reliable	6
<<<<< Less Important ----- More Important >>>>>										

9 ALTERNATIVE EVALUATION

9.1 EXISTING UNIT DISCHARGE AND PROSPECTIVE NEW UNIT DISCHARGE

Figure 30 below shows a comparison of the discharges currently provided by the fish water units in red and the discharges expected by the new Kaplan turbines in green and the new propeller turbines in blue. The current range discharge available from the existing units is about 700 cfs at any head. With the propeller units some of this range may be lost with the possible range being lessened to about 500 cfs at any head. The expected range in the new Kaplans however will be as much as 1,200 cfs. This will push the maximum discharge expected in the new Kaplans to about 3,200 to 3,300 cfs which is an increase of 500 to 600 cfs or about 20%.

9.2 REMOVAL OF SOME HIGH LEVEL ALTERNATIVES

9.2.1 REPLACE WITH AN OIL-FREE KAPLAN RUNNER

Oil-free hydroturbine runners were seriously considered for this rehabilitation. However, there were several shortcomings that could not be overcome:

1. Oil-free hubs considerably decrease the amount of oil that is exposed to the potential to leak into the river water but it does not remove the possibility of oil escaping into the river. This is because oil is still necessary for the lubrication of the bearings used to operate the turbine. There are two generator guide bearings and one turbine guide bearing as well as a thrust bearing for each unit that the rotating unit sets on top of. Additionally, there is a hydraulically operated servo that moves the turbine blades during operation to efficiently convert water hydraulic energy to electrical power. Oil use is decreased but not removed.
2. Because the interior of the hub contains no lubricating oil, the components inside the hub especially the blade operating components must have larger cross sections to resist the possibility of fatigue failure.
3. Also, due to the lack of lubricating oil the bearing surface area must be larger to lower the blade trunnion loading.
4. The result of number 2 and number 3 above will cause the runner to have a larger diameter (on the order of 7% increase in diameter) which will be a limiting factor in increasing flow through the unit. Additionally, the units will be more expensive on the order of about a 20% increase in cost of the runner.
5. There will be a significant amount of work to redesign some of the existing rotating and stationary components to address the new oil-less turbine hub.
6. There is not a great deal of operating data to support the dependability or lack thereof of the oil-less turbine hubs. Oil-less hubs have only been in operation since about 1985. Because of this there is a risk that the reliability/dependability criteria is not met and this is one of the most important of the 9 criteria that must be addressed.

For these reasons Oil-less Kaplan hubs will be removed from consideration for rehabilitation of The Dalles Fish Water turbines. Therefore **High Level Alternative D, Replacement Turbine with Oil-Free Kaplan Type Runner, Uprate Unit to Shaft Limit** and **High Level Alternative G, Replacement Turbine with Oil-Free Kaplan Type Runner, Uprate Unit to Higher than Shaft Limit** will be removed.

9.2.2 REPLACE WITH FIXED BLADE PROPELLER RUNNER UPATED TO SHAFT LIMIT/UPRATED ABOVE SHAFT LIMIT

Fixed Blade Propeller Turbines were also considered for this rehabilitation, however as with the oil-free hubs there were some shortcoming that required that two of the three high level alternatives be removed from consideration.

The fish water turbines are each currently operated from about 2000 cfs to 2700 cfs. The new turbines would need to be able to operate in this range also. Additionally, it would be an added benefit if they had the capability and flexibility to operate in a consistent manner above this range. Unfortunately, propeller units have a narrow range of operation and although the two uprated propellers would have the capability to operate at the higher outputs and discharges they would not have the flexibility to also operate in the standard range at 2000 to 2700 cfs.

Since any replacement option would have to be able to provide the existing discharge these uprated propellers would not have the flexibility to replace the existing units. For this reason Fixed blade propellers **High Level Alternative E, Replacement Turbine with Propeller Type Runner, Uprate Unit to Shaft Limit** and **High Level Alternative H, Replacement Turbine with Propeller Type Runner,**

Upate Unit to Higher than Shaft Limit were removed from consideration. See Charts 25 and 26. There is no discharge capability with these units in the normal operating range, 2000 cfs to 2700 cfs.

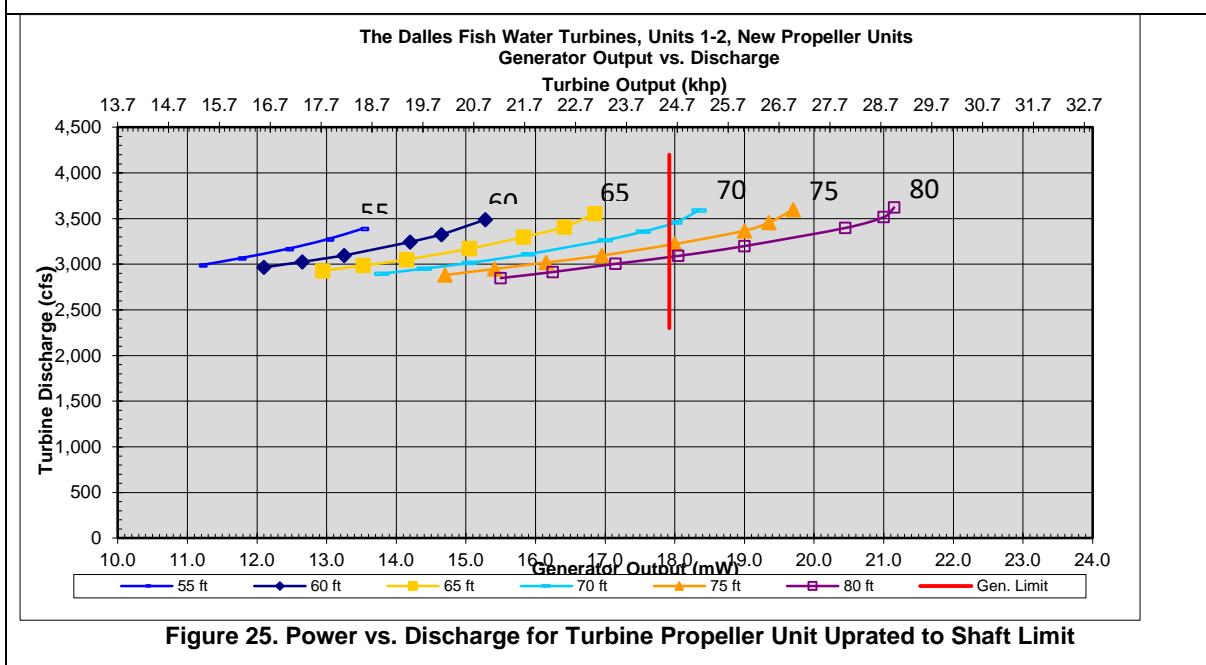
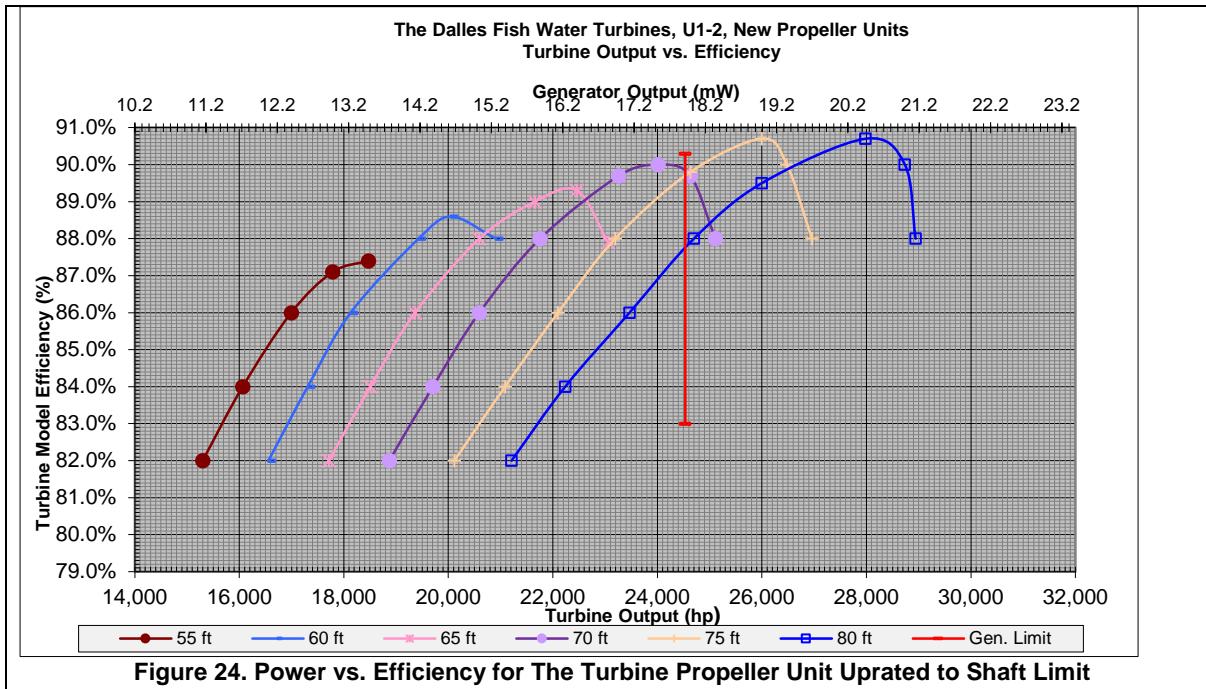



Figure 27 shows that the turbine discharges from the uprated propeller units to not have the flexibility to operate in the 2000 to 2700 cfs range which is imperative for operation under normal conditions.

9.2.3 REPLACE WITH A KAPLAN RUNNER UPRATED ABOVE SHAFT LIMIT.

This high level alternative required the performance of a shaft study before it could actually be seriously considered. It would have been necessary to visit the powerhouse and perform a physical shaft study and evaluate the results. Additionally an FEA would have been performed to assess the shafts capabilities.

However, evaluation of the uprate potential by turbine manufacturers recommended that this uprate would be beyond the capability of the existing unit's physical constraints to be able to operate at the higher output. The major constraint was not being able to pass enough water through the unit to operate at the higher outputs.

Also, the new uprated Kaplan unit would difficulty meeting the existing runaway speed. For these reasons **High Level Alternative F, Replacement Turbine with Oil-Filled Kaplan Type Runner, Uprate Unit to Higher than Shaft Limit** will be removed from consideration.

9.2.4 REPLACE WITH KAPLAN RUNNER WITH THE SAME RATED OUTPUT AS EXISTING UNITS

This alternative would replace the existing units with a new Kaplan that has the same performance as the existing units. This alternative will address the requirement that the unit be reliable/dependable and have operational flexibility but will not capable of increasing discharge through the unit. However, this unit is still an acceptable alternative. This alternative would be a replacement in kind of the existing units. This alternative **High Level Alternative A, Replacement Turbine with Kaplan Type, Same Rated Output as Existing** is recommended as the third recommended alternative.

9.2.5 REPLACE WITH A FIXED BLADE PROPELLER RUNNER WITH THE SAME RATED OUTPUT AS EXISTING UNITS

Fixed Blade Propeller Turbines have a narrow range of operation so the only way it would be possible for a propeller unit to be recommended as a replacement option is if they are designed to provide the same flow that the existing Kaplans are providing. The strength of the propellers is that the runner hub has no moving parts so they would be considered more reliable. They are not filled with oil as a Kaplan is so they are more environmentally friendly. The down side is that they have no flexibility. They would be less likely to be able to meet the fishway marginal flow requirements with a single unit than the existing units. The existing units can meet single unit marginal flow in some cases but these propeller units would not have that capability.

On the strength of their simplicity and dependability these units, **High Level Alternative B, Replacement Turbine with Propeller Type, Same Rated Output as Existing**, are recommended as the second recommended alternative.

9.2.6 REPLACE WITH A KAPLAN TURBINE WITH UPRATE TO SHAFT LIMIT

This alternative would replace the existing units with a new Kaplan that has performance uprated to the shaft limit. This alternative will address the requirement that the unit be reliable/dependable, have operational flexibility and it will meet the requirement for increase discharge through the unit. This unit addresses the desire to have the replacement units be capable of meeting marginal discharge requirements with single unit operation. This alternative **High Level Alternative B, Replacement Turbine with Kaplan Type, Upgraded to Shaft Limit** is the recommended alternative.

10 RECOMMENDED FIRST ALTERNATIVE AND SECOND ALTERNATIVE

10.1 GENERAL

This report will try to provide information that will allow the best decision for the fish water units to be reached. This means that fish turbine unit performance does not have the overriding importance that it would have in a normal unit rehabilitation. The three most important components of the fish water turbine rehabilitated system are dependability, discharge and flexibility.

Dependability is defined as operating without failure over their design life of 30 years.

Flexibility means that the rehabilitated system has approximately the range of discharge available for attraction flow as the current system which is about 500-700 cfs under normal conditions. It would be desirable to extend the range to 1,000-1,200 cfs if possible.

Since turbine discharge is very important for the fish attraction system, it is mandatory that the system can still produce the approximate discharge currently available. The current discharge per unit generally varies between 2,000 cfs and 2,700 cfs. It would be desirable to be able to provide more discharge than is currently available, but only if the additional discharge allows a single unit to provide enough flow to keep the fishway in marginal compliance. This would yield redundancy in the system. With the recommended alternative it will be possible to provide as much as 3,200 to 3,400 cfs while still maintaining the current normal discharge through the units. See Charts 27 and 28.

The alternative that meets these requirements is **High Level Alternative C, Replacement Turbine with Kaplan Type, Uprated to Shaft Limit**

10.2 THE RECOMMENDED ALTERNATIVE, ALT C, REPLACE TURBINE WITH KAPLAN RUNNER, UPRADED TO SHAFT LIMIT

The new units will be designed to operate up to the shaft limit at 24,520 hp (17.92 MVA). This high level alternative that best addresses the three most important items mentioned in the matrix in Section 7 is Alternative C. This alternative will be able to deliver the same discharge as the existing units and will be able to provide additional discharge as necessary up to at least 20% more so a single unit can be used to provide enough discharge to keep the fishway in marginal compliance.

Manufacturers have stated though that to get the higher flows several things will have to be addressed.

1. More water through the unit will require the gates to open to a larger opening than existing which may require new wicket gate servos. Contract language will have to address this.
2. The maximum runaway speed of the units may be affected but will not be completely known until a proposal is received from the manufacturers. There will have to be language in the contract to address this so potential contractors will provide additionally information in their proposal. It's possible that the runner minimum angle will be limited due to this issue.
3. Higher flows may cause flow separation on the leading edge of the stay vanes and it may be necessary to add extensions to the stay vane to address this problem. This also will have to be addressed in the contract language.

Additionally, the required generator uprate study may identify items to be replaced not mentioned in the cost analysis

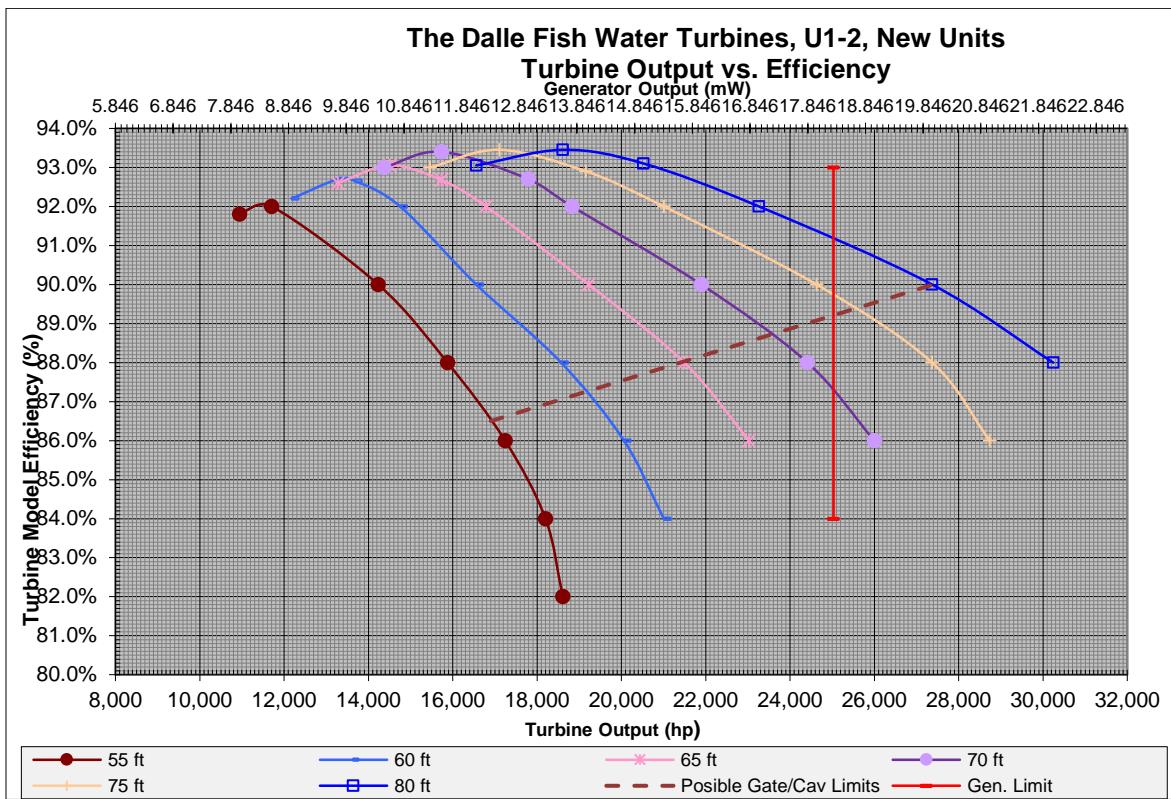


Figure 26. Chart Showing the Performance, Horsepower and Efficiency, of the New Units

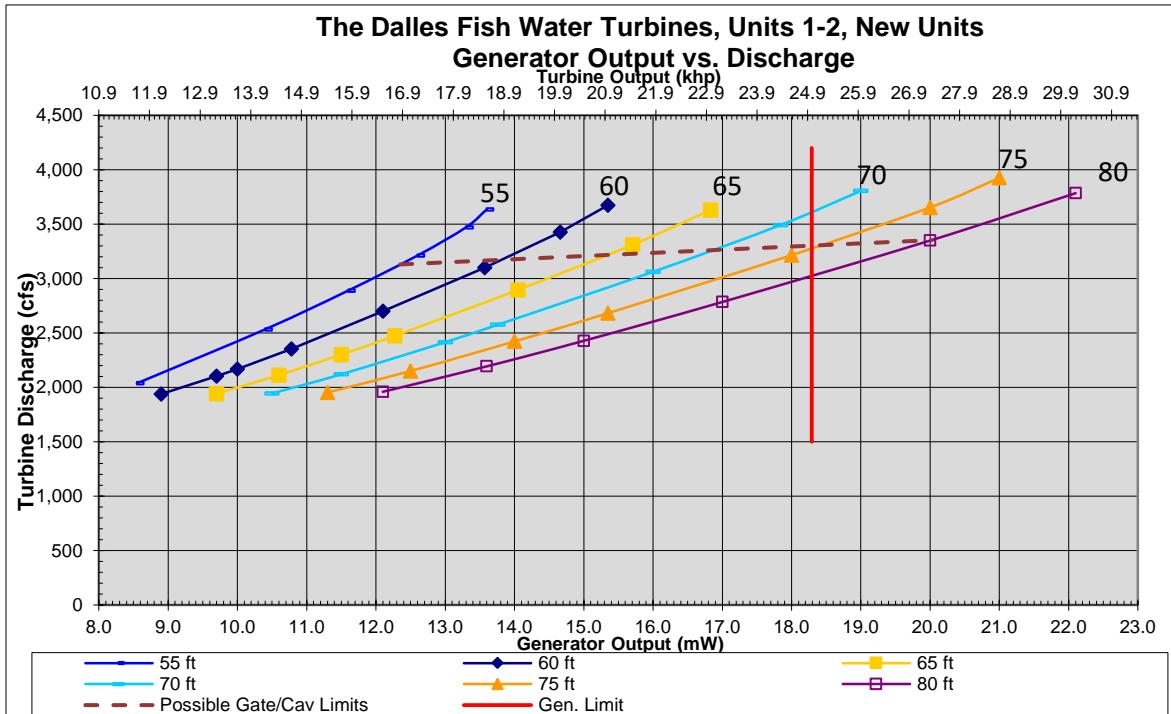


Figure 27. Chart Showing the performance, Megawatts and Discharge of New Units

10.3 SCOPE OF PHASE 1 WORK FOR THE RECOMMENDED ALTERNATIVE

The specific design functions and physical limits of Phase 1 Plans and Specifications are listed below. These are based on the assumption that **Alternative B** is approved and funded for the Phase 1 work.

Generator Uprate Study

Before the Phase 1 work can be started a generator uprate study will have to be performed. This work is normally contracted to an AE company capable of performing this work and will take about 10-12 months. Recommendations provided by the report will be reviewed COE and may be added to the specification. HDC believes there is a low probability of any major work being necessary due to this uprate study.

DESIGN DOCUMENTATION REPORT

A design documentation report (DDR) will be developed, which will chronicle the development of specific design aspects of Phase 1 documents. The DDR document will serve as a roadmap and justification for specific aspects of the design.

FISH FRIENDLY

It is assumed that the units will not have to conform to any fish friendly constraints which will impact the dependability, flexibility and discharge capability of the new units. Since these units will be designed to provide the best and maximum discharge for the fish attraction system it is imperative that they are free to be designed fully for that purpose.

PLANS

Plans will be developed primarily by HDC, with supporting information added as necessary by Portland District EC Division.

SPECIFICATIONS

Specifications will be developed in parallel by HDC and EC. HDC will provide technical specifications related directly to the turbine and generator work. EC will provide technical specifications related to general site work, lead and asbestos abatement, and environmental protection. Contracting division will work with EC staff to develop contract clauses and documents related to the Contracting function. EC staff will assemble the specifications package for reviews and advertisement.

INCLUDED PLANT AND EQUIPMENT

The following items capture the proposed rehabilitation and replacement of components for the Fish Water Turbines at The Dalles Dam.

- **CFD analysis** – The contract will call for a computational fluid dynamic (CFD) analysis to maximize the discharge through the unit. Additionally the contract will call for a physical model test to be fabricated and tested to verify the design provided by the manufacturer.
- **Turbine Runner Hub and Blades** – The runner hub will be designed and fabricated from carbon steel. The blades will be stainless steel, fabricated or cast from CA6NM which is a low chromium stainless steel with excellent physical properties. The blade seals will be required to be triple redundant to lower the risk of oil leakage. Both the dynamic seal on the blade and the static seal on the runner hub will be either weld overlaid with stainless steel or sleeved with stainless steel weld metal to increase the seal capability. The shaft seal will be double redundant, i.e. two O-ring seals between the runner hub and the shaft to lower the risk of oil leakage. The fastener bores in the runner hub for the shaft coupling will be blind hole to eliminate a potential leak path.
- **Kaplan Oil Head** – The Kaplan oil head will be inspected and refurbished. New bronze bushings will be installed. The Kaplan pipes will be generally inspected, inspected for straightness and refurbished as necessary.
- **Wicket Gates** – New stainless steel wicket gates with stainless steel sleeves and self-lubricated bushings will be provided. Since new wicket gates are to be provided the manufacturer will be

able to modify the wicket gate profile to increase efficiency and discharge through the unit. Wicket gate bushings will be replaced with self-lubricated composite material.

- **Wicket Gate Packing** – Wicket gate packing will be replaced.
- **Stay Vanes** – Stay vanes will be inspected. Defects, dents, or dings will be repaired. There is a possibility that stay vane extensions will be installed to address potential leading edge flow separation due to increased flow passing through the unit. Vanes will be repainted. The stay vane flange which is the mounting flange for the outer head cover will be inspected and re-machined to flat and plumb.
- **Wicket Gate Servomotors** – New wicket gate servos will be installed with a longer stroke to allow the wicket gates to open to a larger angle. This is necessary to increase discharge through the unit.
- **Operating Ring and Wicket Gate Operating Links** – Links between operating ring and wicket gates will be refurbished to improve operational capabilities and reduce wear. All bearing or bushing surfaces will be replaced with self-lubricated materials. All pins will be replaced. The Farval automatic greasing system will be removed.
- **Turbine Packing Box and Shaft Sleeve** – The packing box and shaft sleeve will be replaced.
- **Turbine Guide Bearings, Generator Guide Bearings and Thrust Bearings** – All generator and turbine guide bearings and the thrust bearings will be inspected, repaired as necessary and rebabbitted. The spare bearings will also be inspected, repaired as necessary and rebabbitted.
- **Turbine Oil Supply Piping** – Oil supply piping in the immediate vicinity of the turbine will be removed, inspected, and returned to service.
- **Head Covers** – The head covers will have be 100% visually inspected and repaired as necessary and repainted. The facing plated mounted on the outer head cover will be inspected and replaced as necessary and machined to flat and plumb.
- **Bottom Ring** – The bottom ring will be inspected for flatness and most likely be re-machined to flat and plumb. The facing plated will be inspected and replaced as necessary
- **Discharge Ring** – The discharge ring will be inspected machined to overlay with a 48 inch stainless steel band. The band will be centered in the high cavitation area to provide protection to this area of the unit when operating.
- **Generator Maintenance** – General maintenance on the unit will be performed upon disassembly. This includes cleaning and inspection of all components as they are disassembled.
- **Unit Alignment** – Alignment of each unit will be checked for plumb, centering, offset, and dogleg. allowable limits will be established in plans and specifications.
- **Paint** – The steel components in the water passage from the stay vane to the elevation of the runner and draft tube platform will be painted. Previous paint will be removed and lead abated as necessary.
- **Generator Rewind** – A generator rewind will be performed. This includes the supply of a stator winding and accessories, stator core, reinsulated rotor poles, neutral current transformers, stator Resistance Temperature Detectors, (RTDs) Partial Discharge Analyzer (PDA) system, and spare parts; removal and installation of the stator core, rotor poles, and current transformers; installation of the stator winding, and the PDA system. Additional work also includes factory and field tests for the stator winding and accessories, the stator core, the rotor poles, and special field tests.
- **Generator Uprate Study** – An uprate study will be conducted to determine other items that need to be refurbished or renewed to get the complete uprated output from the unit.

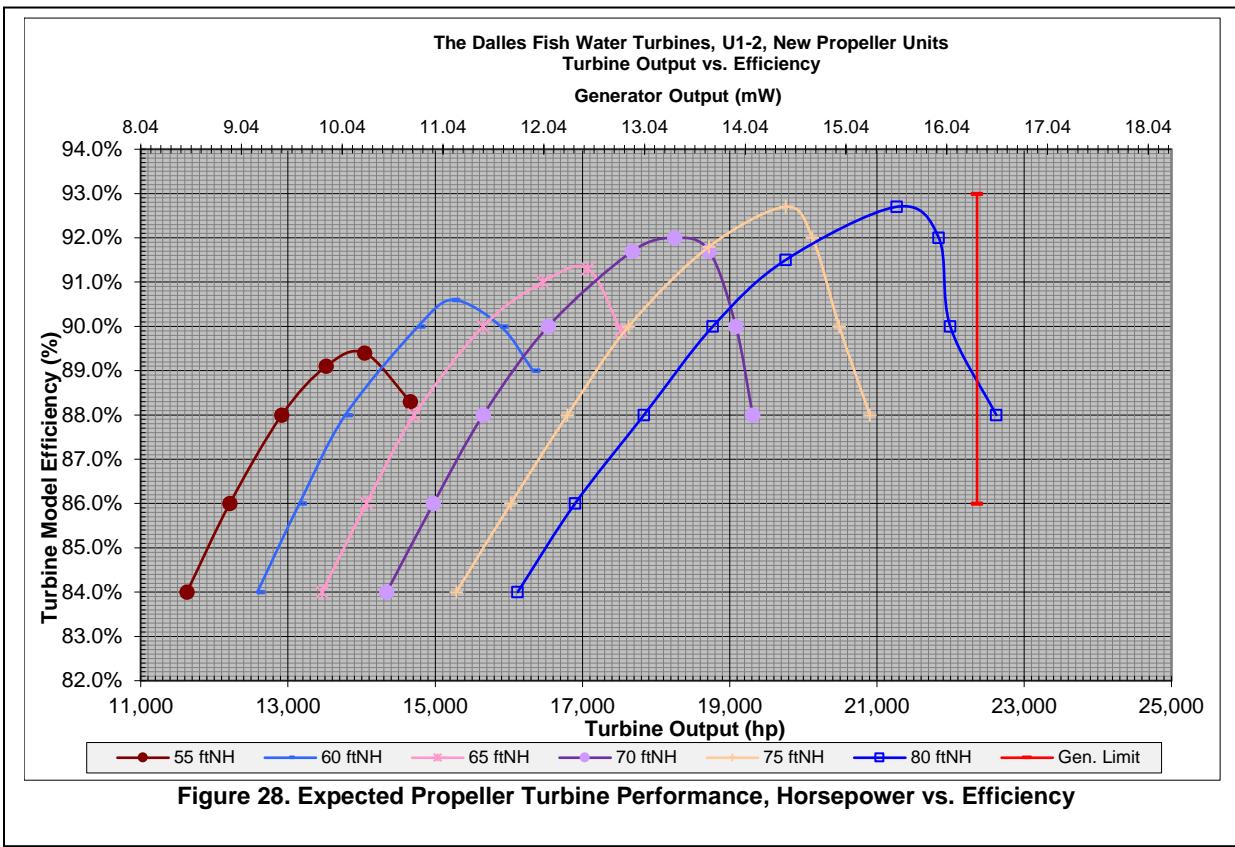

- **Excitation System Replacement** – The existing excitation systems will be replaced with brushless excitation systems. The work would include designing, manufacturing, factory testing, delivery, installing, field testing, and commissioning completed excitation systems.
- **Asbestos Removal** – Asbestos pipe insulation on pipe that is disturbed will be abated and replaced with non-asbestos insulation. It is expected that unit wiring may also contain asbestos, which requires abatement.
- **Expendables and Consumables** – Non-durable goods and materials will be replaced in-kind when components are disassembled. Examples are bolts, nuts, washers, packing, seals, gaskets, cotter pins, and grease fittings.
- **Update data acquisition and controls for the unit.** Items include:
 - Replace all bearing resistance temperature detectors (RTDs)
 - Replace all bearing over-temperature protection devices
 - Replace analog pressure and temperature gauges with 4-20 mA devices

Table 13. Estimated Cost for Recommended Alternative C

Alternative C , Replacement Turbine Oil-Filled Hub, Uprate to Shaft Limit		First Unit	Second Unit
1	New Kaplan Runner	\$1,546,000	\$1,546,000
2	Turbine Model Test	\$1,500,000	---
3	Site Mob/Demob	\$132,727	\$132,727
4	Disassembly of Hydraulic Turbine	\$1,478,577	\$1,478,577
5	Reassembly of Hydraulic turbine	\$663,636	\$663,636
6	Pre-Disassembly testing	\$177,734	\$177,734
7	Disassembly Equipment	\$10,000	\$3,017
8	Painting & Lead Abatement	\$100,264	\$100,264
9	Furnish New Draft Tube Platform	\$83,099	\$83,099
10	Inspect Piston, Blade Servo, Operating rod	\$5,000	\$5,000
11	Furnish New Piston and Rod Rigs	\$50,720	\$50,720
12	Furnish Superbolt Nuts for Piston Rod	\$14,513	\$14,513
13	Inspect/Refurbish Gen/Turbine Shafts	\$60,611	\$60,611
14	Bearing Refurbishment	\$313,588	\$313,588
15	Furnish New Wicket Gates	\$701,179	\$701,179
16	Remove Wicket Gate Grease System	\$20,000	\$20,000
17	Furnish Greaseless Bushings	\$47,078	\$47,078
18	Refurbish Wicket Gate Operating System	\$25,712	\$25,712
19	Refurb Outer Headcover, Bottom Ring, Stay Ring, Operating Ring, Air Valve	\$275,700	\$275,700
20	Refurb Wicket Gate Servos	\$86,242	\$86,242
21	Line Bore Wicket Gate Stem Bushing Bores	\$23,010	\$23,010
22	Furnish New Packing Box	\$24,792	\$24,792
23	Furnish New Shaft Sleeve, Mandrel & Clamps	\$27,500	\$26,562
24	Discharge Ring Stainless Steel Overlay and Cav Repair	\$730,989	\$730,989
25	Replace TGB Oil System	\$23,670	\$23,670
26	Furnish New TB External Oil Cooler	\$200,000	\$200,000
27	Braking System Refurbishment	\$33,017	\$33,017
28	Braking Ring Inspection and Refurbishment	\$15,000	\$15,000
29	Shaft Study	---	---
30	Generator Rewind	\$2,000,000	\$2,000,000
31	Exciter	\$300,000	\$300,000
32	Generator Surface Air Coolers	\$80,000	\$80,000
33	New Stator Core	\$600,000	\$600,000
34	Rotor Pole Refurbishment	\$300,000	\$300,000
35	Generator Uprate Study	\$400,000	---
	Subtotal	\$12,050,358	\$10,142,437
	Total	\$22,192,795	

10.4 THE NEXT BEST ALTERNATIVE, ALT B, REPLACE TURBINE WITH PROPELLER RUNNER, SAME RATED OUTPUT AS EXISTING.

The new units will be designed to operate to approximately the same output as existing. The existing output for these units is 18,800 hp (13.74 MVA). It would not be inconceivable to slightly increase the output to a point below the shaft limit for this secondary alternative as long as we can achieve the proper discharge for the fishway. An output of 20,000 hp (14.62 MVA) is reasonable. This would slightly increase the output of the units but would not appreciable increase the discharge through the units. See Charts 29 and 30.

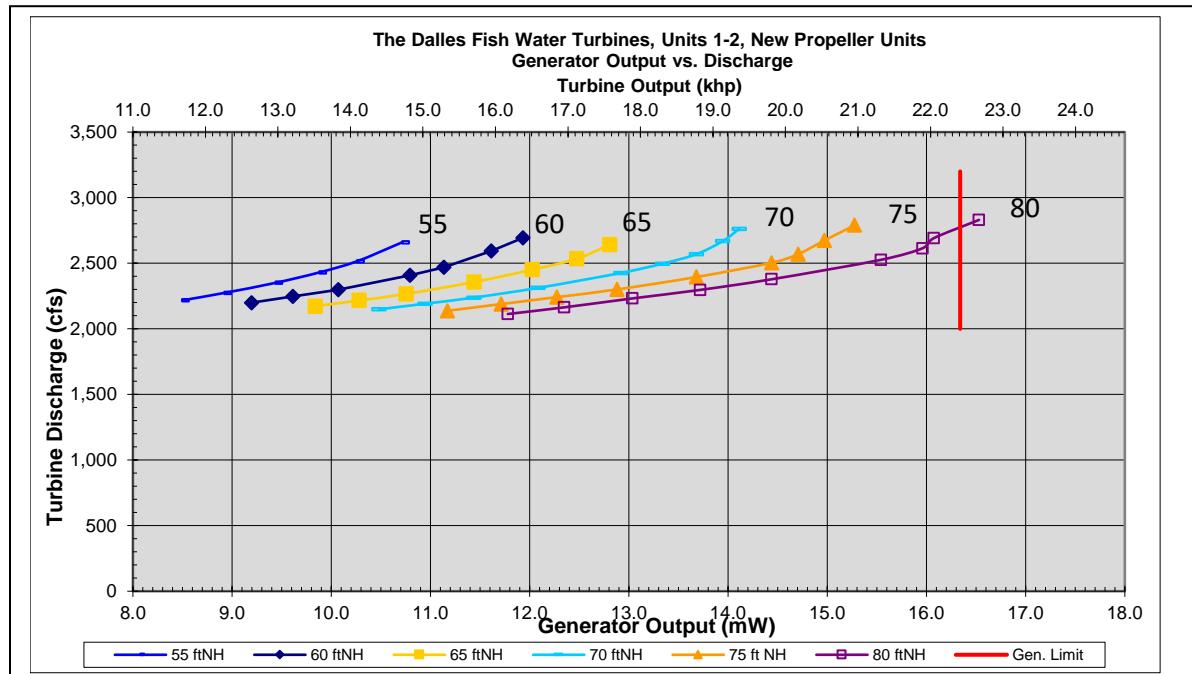


Figure 29. Expected Propeller Turbine Performance, Discharge vs. Generator Output

10.5 SCOPE OF PHASE 1 WORK FOR THE SECOND RECOMMENDED ALTERNATIVE

The specific design functions and physical limits of Phase 1 Plans and Specifications are listed below. These are based on the assumption that **Alternative C** is approved and funded for the Phase 1 work.

DESIGN DOCUMENTATION REPORT

A design documentation report (DDR) will be developed, which will chronicle the development of specific design aspects of Phase 1 documents. The DDR document will serve as a roadmap and justification for specific aspects of the design.

FISH FRIENDLY

It is assumed that the units will not have to conform to any fish friendly constraints which will impact the dependability, flexibility and discharge capability of the new units. Since these units will be designed to provide the best and maximum discharge for the fish attraction system it is imperative that they are free to be designed fully for that purpose.

PLANS

Plans will be developed primarily by HDC, with supporting information added as necessary by Portland District EC Division.

SPECIFICATIONS

Specifications will be developed in parallel by HDC and EC. HDC will provide technical specifications related directly to the turbine and generator work. EC will provide technical specifications related to general site work, lead and asbestos abatement, and environmental protection. Contracting division will work with EC staff to develop contract clauses and documents related to the Contracting function. EC staff will assemble the specifications package for reviews and advertisement.

INCLUDED PLANT AND EQUIPMENT

The following items capture the proposed rehabilitation and replacement of components for the Fish Water Turbines at The Dalles Dam.

- **CFD analysis** – The contract will call for a computational fluid dynamic (CFD) analysis to maximize the discharge through the unit. Additionally the contract will call for a physical model test to be fabricated and tested to verify the design provided by the manufacturer.
- **Turbine Runner Hub and Blades** – The runner hub will be designed and fabricated from carbon steel. The blades will be stainless steel, fabricated or cast from CA6NM which is a low chromium stainless steel with excellent physical properties. The runner is a propeller unit so no oil is in the runner hub.
- **Kaplan Oil Head** – The Kaplan oil head will be removed since there is no Blade servo or static oil in the hubinspected and refurbished. New bronze bushings will be installed. The Kaplan pipes will be removed.
- **Wicket Gates** – New stainless steel wicket gates with stainless steel sleeves and self-lubricated bushings will be provided. Since new wicket gates are to be provided the manufacturer will be able to modify the wicket gate profile to increase efficiency and discharge through the unit. Wicket gate bushings will be replaced with self-lubricated composite material.
- **Wicket Gate Packing** – Wicket gate packing will be replaced.
- **Stay Vanes** – Stay vanes will be inspected. Defects, dents, or dings will be repaired. There is a possibility that stay vane extensions will be installed to address potential leading edge flow separation due to increased flow passing through the unit. Vanes will be repainted. The stay vane flange which is the mounting flange for the outer head cover will be inspected and re-machined to flat and plumb.
- **Wicket Gate Servomotors** – New wicket gate servos will be installed with a longer stroke to allow the wicket gates to open to a larger angle. This is necessary to increase discharge through the unit.
- **Operating Ring and Wicket Gate Operating Links** – Links between operating ring and wicket gates will be refurbished to improve operational capabilities and reduce wear. All bearing or bushing surfaces will be replaced with self-lubricated materials. All pins will be replaced. The Farval automatic greasing system will be removed.
- **Turbine Packing Box and Shaft Sleeve** – The packing box and shaft sleeve will be replaced.
- **Turbine Guide Bearings, Generator Guide Bearings and Thrust Bearings** – All generator and turbine guide bearings and the thrust bearings will be inspected, repaired as necessary and rebabbitted. The spare bearings will also be inspected, repaired as necessary and rebabbitted.
- **Turbine Oil Supply Piping** – Oil supply piping in the immediate vicinity of the turbine will be removed, inspected, and returned to service.
- **Head Covers** – The head covers will have be 100% visually inspected and repaired as necessary and repainted. The facing plated mounted on the outer head cover will be inspected and replaced as necessary and machined to flat and plumb.
- **Bottom Ring** – The bottom ring will be inspected for flatness and most likely be re-machined to flat and plumb. The facing plated will be inspected and replaced as necessary
- **Discharge Ring** – The discharge ring will be inspected machined to overlay with a 48 inch stainless steel band. The band will be centered in the high cavitation area to provide protection to this area of the unit when operating.
- **Generator Maintenance** – General maintenance on the unit will be performed upon disassembly. This includes cleaning and inspection of all components as they are disassembled.

- **Unit Alignment** – Alignment of each unit will be checked for plumb, centering, offset, and dogleg. Allowable limits will be established in plans and specifications.
- **Paint** – The steel components in the water passage from the stay vane to the elevation of the runner and draft tube platform will be painted. Previous paint will be removed and lead abated as necessary.
- **Generator Rewind** – A generator rewind will be performed. This includes the supply of a stator winding and accessories, stator core, reinsulated rotor poles, neutral current transformers, stator Resistance Temperature Detectors, (RTDs) Partial Discharge Analyzer (PDA) system, and spare parts; removal and installation of the stator core, rotor poles, and current transformers; installation of the stator winding, and the PDA system. Additional work also includes factory and field tests for the stator winding and accessories, the stator core, the rotor poles, and special field tests.
- **Generator Uprate Study** – An uprate study does not have to be performed for this alternative since the rated output of the new units will not change.
- **Asbestos Removal** – Asbestos pipe insulation on pipe that is disturbed will be abated and replaced with non-asbestos insulation. It is expected that unit wiring may also contain asbestos, which requires abatement.
- **Expendables and Consumables** – Non-durable goods and materials will be replaced in-kind when components are disassembled. Examples are bolts, nuts, washers, packing, seals, gaskets, cotter pins, and grease fittings.
- **Update data acquisition and controls for the unit.** Items include:
 - Replace all bearing resistance temperature detectors (RTDs)
 - Replace all bearing over-temperature protection devices
 - Replace analog pressure and temperature gauges with 4-20 mA devices

Table 14. Estimated Cost for the Next Best Alternative B

Alternative B , Propeller Runner, Same Rated Output as Existing		First Unit	Second Unit
1	New Propeller Runner	\$1,013,000	\$1,013,000
2	Turbine Model Test	\$1,000,000	---
3	Site Mob/Demob	\$132,727	\$132,727
4	Disassembly of Hydraulic Turbine	\$1,478,577	\$1,478,577
5	Reassembly of Hydraulic turbine	\$663,636	\$663,636
6	Pre-Disassembly testing	\$177,734	\$177,734
7	Disassem/Assembly Equipment	\$10,000	\$3,017
8	Painting & Lead Abatement	\$100,264	\$100,264
9	Furnish New Draft Tube Platform	\$83,099	\$83,099
10	Inspect Piston, Blade Servo, Operating rod	---	---
11	Furnish New Piston and Rod Rigs	---	---
12	Furnish Superbolt Nuts for Piston Rod	---	---
13	Inspect/Refurbish Gen/Turbine Shafts	\$60,611	\$60,611
14	Bearing Refurbishment	\$313,588	\$313,588
15	Furnish New Wicket Gates	\$701,179	\$701,179
16	Remove Wicket Gate Grease System	\$20,000	\$20,000
17	Furnish Greaseless Bushings	\$47,078	\$47,078
18	Refurbish Wicket Gate Operating System	\$25,712	\$25,712
19	Refurb Outer Headcover, Bottom Ring, Stay Ring, Operating Ring, Air Valve	\$275,700	\$275,700
20	Refurb Wicket Gate Servos	\$86,242	\$86,242
21	Line Bore Wicket Gate Stem Bushing Bores	\$23,010	\$23,010
22	Furnish New Packing Box	\$24,792	\$24,792
23	Furnish New Shaft Sleeve, Mandrel & Clamps	\$27,500	\$26,562
24	Discharge Ring Stainless Steel Overlay and Cav Repair	\$730,989	\$730,989
25	Replace TGB Oil System	\$23,670	\$23,670
26	Furnish New TB External Oil Cooler	\$200,000	\$200,000
27	Braking System Refurbishment	\$33,017	\$33,017
28	Braking Ring Inspection and Refurbishment	\$15,000	\$15,000
29	Shaft Study	---	---
30	Generator Rewind	\$2,000,000	\$2,000,000
31	Exciter	\$300,000	\$300,000
32	Generator Surface Air Coolers	\$80,000	\$80,000
33	New Stator Core	\$600,000	\$600,000
34	Rotor Pole Refurbishment	\$300,000	\$300,000
35	Generator Uprate Study	---	---
	Subtotal	\$10,547,125	\$9,539,204
		Total	\$20,086,329

11 COST ENGINEERING

11.1 COST ENGINEERING, FISH UNITS

This section presents the cost estimate for The Dalles Fish Water Unit Refurbishment, as presented in the Final Report at Phase 1A. The construction cost of the recommended alternative was estimated at \$23 million. All the construction cost for this project includes 21% contingency, and 7.8% escalation based on a Class 3 cost estimate. The Class 3 cost estimate doesn't account for unforeseen details addressed during the DQC review process.

11.2 CONTINGENCY/ RISK ANALYSIS

The cost risk analysis have been produced and a contingency value of 21% is assumed for this preliminary estimate.

11.3 OVERTIME

Overtime also may be necessary for this construction depending on the season, due to the risk of flood events, fish passage or/and possibility of extending the duration of the contract.

11.4 BASIS OF ESTIMATE

The estimate for this project was developed using information provided by the designers, including places and quantities. The estimate was prepared using MCACES MII version 4.3.4, and was based on historical data from Chief Joseph Station Service Rehab. The electrical portions of the estimate were developed in detail using labor and equipment crews, quantities, production rates, and material price quotes.

11.4.1 RECOMMENDED ALTERNATIVE AT PHASE 1A

The construction cost estimated for the Recommended Alternative is \$23M based on Class 3 cost estimate. The major base items are for the mechanical systems: the hydraulic design, a prototype oil-filled Kaplan blade turbine runner (2200cfs to 3300cfs), new wicket gates & linkage components, new servomotors & associated items, bearings inspection and refurbishments. For the electrical systems, the goal is to perform an uprate generator study by A&E contract prior to writing the plans and specifications for the new units. The electrical work includes, generator winding replacement, stator core replacement, and exciter replacement. For environmental items, asbestos & lead paint removal, and painting of the fish units.

11.4.2 NEXT BEST ALTERNATIVE AT PHASE 1A

The construction cost estimated for the Next Best Alternative is \$19.6M based on Class 3 cost estimate. The major base items are for the mechanical systems: the hydraulic design, a prototype propeller blade turbine runner (2200cfs to 2700cfs), new wicket gates & linkage components, refurbish servomotors & associated items, bearings inspection and refurbishments. For the electrical systems, the goal is to maintain the existing generator specs (no uprate study). The work includes the generator winding replacement, stator core replacement, and exciter replacement. For and environmental items, asbestos & lead paint removal, and painting of the fish units.

11.5 ACQUISITION STRATEGY

The acquisition strategy is yet to be determined at this early phase of planning. However, this is likely to be complex project, with an engineering design by the contractor and known major long manufacturing/refurbish lead times. Based on these challenges, the recommendation for the acquisition strategy is unrestricted Best Value Trade off source selection, where a work plan can be identified with realistic durations and timeframes for each required work task sequencing in a logical order; and the challenges to be encountered during construction, resulting on minimizing major power outages.

11.6 OPERATIONS DURING CONSTRUCTION

All construction work associated with fish units will comply with the current Fish Passage Plan (FPP) requirements unless specifically coordinated through the Fish Passage Operations and Maintenance (FPOM) regional work group. Presently both fish units must be in operation to maintain criteria entrance conditions as specified in the Fish Passage Plan.

11.7 CONSTRUCTION SCHEDULE

Taking into consideration the Recommended Alternative scope of work for the Fish Units; the construction on-site is anticipated to start in 2022 with the first fish unit assuming a duration between 10-12 months, and second unit with a duration of 8-10 months. Major lead time items are the model test & fabrication for turbine runner and the design/fabrication of the winding. It's anticipated that the first fish unit rehabilitation schedule will exceed a typical winter maintenance period and notice shall be addressed to the fish entities related to this issue. After the new first runner construction of the recommended alternative it will be possible to provide as much as 3200cfs to 3400cfs which will maintain marginal compliance with FPP.

11.8 LIFECYCLE ANALYSIS

Discussions with Operations and HDC indicated that the O&M costs for the Recommend and Next Best Alternative for Fish Units are not expected to be significantly different, therefore a life cycle cost analysis would not show any difference in overall cost.

Appendix A Hydraulic Design

Item 1 The Dalles East Fishladder Ladder Model Memorandum

Memorandum describing the purpose, methodology and equations used to development limited hydraulic 1-D model of The Dalles East Fishladder.

Item 2 TRIP REPORT: The Dalles Dam – Field Trip for East Fish Ladder (EFL) /Fish Unit (FU) Water Surface Levels and other Measurements on April 25 2017

Trip Report to the Dalles East Fishladder and Fish units on April 25 2017 to record and verify the key water level and head gages during a single fish unit operation.

Appendix A Item 1

The Dalles East Fishladder Ladder Model Memorandum

Date: June 22 2017

1. Purpose: Develop Hydraulic Criteria and Constraints for The Dalles Fish Unit Rehabs.
2. Background: The two fish turbine units at The Dalles dam are nearing the end of their design life and a Phase 1-A report has been initiated to assess their rehabilitation. The 30% Phase 1-A report calls for 'constraints and criteria' to determine the revised capacity of the fish turbines. HDC tentatively anticipates that a 10 - 25 % increase in flow capacity may be reasonably feasible.

As the fish unit rehab study is ongoing, a construction project for The Dalles AWS backup system will be completed in March 2018. The design capacity of the gravity fed AWS backup system is 1400 – 1600 cfs depending on the difference in forebay and level in the AWS conduit near the East Entrance, which in turn is dependent on tailwater and entrance operations at the East Entrance and discharge from the AWS backup system. The use of the AWS backup system as supplemental water supply is being considered in the event of a single fish unit outage or during the construction phase of the fish unit upgrades. However until a prototype test can be performed with a simultaneous operation with the AWS backup system and a fish unit a fish unit, there is no certainty that the two systems will be hydraulically compatible.

Criteria and constraints are due in the 30% Phase 1-A Report. The current fish unit flow capacity is amply sufficient to meet fisheries criteria, so the remaining question is how much single unit capacity should be raised to provide one of the following potential targets:

1. Marginally meet entrance criteria with a single FU operation
 - a. 6 entrance weirs open at 8.1 feet submergence, 2 weirs at each entrance location
 - b. Entrance head = 1.1 feet at each entrance
2. Reliably meet entrance criteria in combination with the AWS backup operation.
 - a. 6 entrance weirs open, 2 weirs at each entrance location
 - b. East entrance weirs open at 9.0 feet submergence
 - c. West and South entrance weirs open at 8.5 feet submergence
 - d. Entrance head = 1.5 feet at each entrance
 - e. 1400 cfs contribution from AWS backup system
3. Meet full fisheries criteria in combination with the AWS backup operation.
 - a. Same as above except total AWS discharge = 5000 cfs.
4. Meet Target #2 (entrance criteria) without contribution from AWS backup system
5. Meet Target #3 (full criteria) without contribution from AWS backup system

In the early PDT discussions, it was acknowledged that targets items 4 and 5 were both unattainable without major structural modifications and unnecessary.

A review of the operations at low tailwater elevations ranging between 74 – 76 feet from 2014-2016, and 2011 indicate a total fish unit discharge of 5000 cfs is required to meet full fisheries criteria. At the same tailwater levels, this FU discharge should supply enough flow for entrance submergence levels of about 11.5 feet at the East, 9.5 feet at the West and 8.5 feet at the south entrances, all at 1.5 feet of entrance head. Given equivalent entrance parameters (submergence & head), the largest flow rates will be required at the lower tailwater elevations (This will be explained in the description of the modelling development). At higher tailwater elevations, the same flow will pass through entrances at deeper weir submergences, the only remaining possible concern is whether channel velocity is maintained. A review of 2017 data at relatively high tailwater elevations showed that channel velocities were well within criteria under fish unit operations of about 4500-4600 cfs.

The hydraulic model was used to estimate the FU discharge required for the entrance criteria described in target items 1 & 2.

3. Hydraulic Numerical 1-D Model:

a. Previous Hydraulic Models of The Dalles East Fishladder:

Two hydraulic numerical 1-D models were previously developed for The Dalles East Fishladder:

1. *Hydraulic Evaluation of the East Fishway Adult Bypass System* prepared by Northwest Hydraulic Consultants (1995)
2. *The Dalles Fishladder Model* prepared by CENWP-EC-H (2008)

The first (1995) model was developed under the Hydraulic Evaluation of the Lower Columbia River Adult Bypass System (HELCRBS) program by Northwest Hydraulic Consultants (NHC). NHC developed the model in a proprietary software to compute the open channel flow and called upon used a pipe network program called Kentucky Pipes to compute the closed conduit flow. The model cannot be run on the current Windows and the 1995 version of Kentucky Pipes is no longer available. Also, EC-HD evaluations of the model output revealed that the model was not reliable as the output results could not be replicated by hand calculations from the equations that were reportedly applied in the model.

The 2nd (2008) model was developed in visual basic and called up geometric data in excel sheets and a library of sub functions (and possibly more data). Attempts to rerun the model have failed as the library has not been located.

Since neither previous model was available, a limited model was developed for the purposes of this study.

b. Limited Hydraulic Model used of Criteria Development

With short schedule available, there was only sufficient time to develop a simplified model based on the entrance operations.

The entrance discharge rates were estimated from known conditions (geometry, weir settings and entrance head at each entrance) and compared with the recorded fish unit discharge at the same time. The Dalles Project staff provided fishladder inspection data for the years 2011, 2014, 2015, 2016, and some brief data in 2017. All years included the tailwater levels and entrance heads at each entrance location (3 total), weir levels in each entrance bay (8 total), and the fish unit discharges for most days of the fish passage season. 2011 data included the recorded AWS head in the turbine draft tube. 2017 data included a period of days under a single fish unit operation.

The fish unit discharges were estimated from the hydraulic model and compared with the recorded fish unit discharges. The estimated fish unit discharges were determined by estimating the sum of the entrance discharge and deducting the flow from the upper ladder, 109 cfs.

Estimated $Q_{FU} = \Sigma ED - QL$

In which:

Q_{FU} = sum of fish unit discharges

$\Sigma ED = \Sigma \{Q_i + Q_{i+1} \dots Q_n\}$

QL = Flow from upper ladder = 109 cfs for normal operations

Q_i = Entrance discharge in bay i

n = 8 bays total

i. Entrance Dimensions and Typical Operational Parameters

The entrance dimensions and typical operations averaged during 2011, 2014-2016 are shown in Table 1. The targeted operation is to have at least two entrance bays operating in criteria (> 8 feet of weir submergence and 1-2 feet of entrance head) at each of the three entrance locations.

Table 1 – Entrance Dimension and Typical Operational Parameters

The Dalles East Fishladder Entrances		Number of entrance bays		Entrance Bay Width (ft)	Operating Entrance Head (ft)	Entrance weir submergence (feet)		Ave. Total Discharge (cfs) (2011, 2014-2016)
Entrance Name	Location	Total	Normal Usage			Minimum per Criteria	Typical Operation	
South	South of Spillway	2	2	15	1-2 ft	8	8.5 - 9.5 ft	1,990
West	West end of PH	3	2	8.5	1-2 ft	8	9.5 - 10.5 ft	1,190
East	East end of PH	3	2.5	8.5	1-2 ft	8	11 - 13 ft	1,950
Total		8	6.5					5,130

ii. Difference in Total Discharges between Fish Unit and Entrances

The entrance discharge is the sum of the total fish unit discharge and the flow from the upper ladder and exit section. The ladder is a function of the ladder head set at the exit section, 1 foot for normal salmon passage to 1.3 feet for shad. The estimated ladder discharges are 109 cfs for 1 foot ladder head and 138 cfs for ladder head at 1.3 feet. In comparing discharge from entrances and fish units for the calibrations, 109 cfs was deducted from the estimated total entrance discharges.

iii. Entrance Weir Coefficients

The entrance weir coefficients (C_w) are based on the theoretical weir discharge coefficients (CD) as shown in Figure 1. The discharge coefficients are a function of the ratio of head over the weir (H) to weir height above invert (P). The channel invert elevations are 60 feet NGVD 29. With the minimum weir heights being 2 feet and assuming up to 16 feet of upstream weir head, the maximum ratio of H/P at The Dalles East Fishladder is approximately 8.

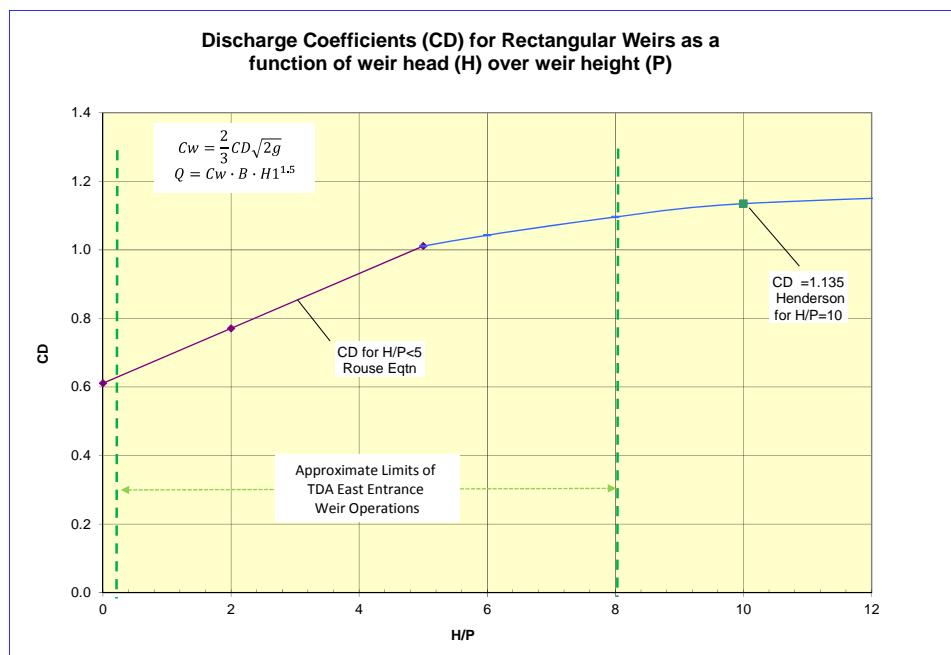


Figure 1 – Weir Discharge Coefficients (CD) as Function of Weir Head (H) to Weir Height (P)

The weir coefficient (C_w) is determined directly from the discharge coefficient (CD), and adjusted with submergence coefficient (C_v) and contraction coefficient (C_c). The equations for weir discharge and coefficients are listed below. The submergence coefficient (C_v) is a correction to the weir discharge computation as a function of the downstream submergence of the weir. All entrance weirs operate with a submergence of at least 8 feet per NMFS criteria. The contraction coefficient is an adjustment to address reductions in weir flow caused by weir edge contractions and reduced proportion of channel conveyance due to approach channel curvature.

Equations for Estimation of Entrance Discharge

$$Q = B \cdot C_w \cdot C_v \cdot H^{1.5}$$

$$H = TW - Zwr + DH$$

$$P = Zwr - Cha Invert$$

$$Zwr = Weir Crest Elevation$$

$$DH = entrance head$$

$$B = entrance width$$

$$TW = Tailwater Elewvation$$

$$C_w = Weir Coefficient$$

$$C_v = Villemonte Coefficient for weir submergence$$

$$C_c = Contraction Coefficient$$

$$IF: \frac{H}{P} < 5, \quad THEN: C_w = \left(\frac{H}{P} \cdot 0.08 + 0.61 \right) \cdot \frac{2}{3} \sqrt{2g} \cdot (1 - C_c)$$

$$IF: \frac{H}{P} > 10, \quad THEN: C_w = 1.135 \cdot \frac{2}{3} \sqrt{2g} \cdot (1 - C_c)$$

$$IF: 5 > \frac{H}{P} > 10, \quad THEN: C_w = \left(\frac{H}{P} - 5 \right) \left[\frac{1.135 - 1.01}{10 - 5} \right] \cdot \frac{2}{3} \sqrt{2g} \cdot (1 - C_c)$$

$$C_v = \left(1 - \left(\frac{TW - Zwr}{H} \right)^{1.5} \right)^{0.385}$$

$$\sum_{i=1}^n ED = Q_i + Q_{i+1} + \dots Q_n$$

$$\Sigma ED = Sum total entrance discharge rates$$

$$Q_i = entrance discharge in entrance bay i$$

$$n = total number of entrance bays = 8$$

iv. Contraction Coefficients and Model Calibration

The contraction coefficient (C_c) is only parameter that is available for calibration of the model computation of entrance discharge. As stated above, the contraction coefficient addresses reductions in weir flow caused by weir edge contractions and reduced channel conveyance due to approach channel curvature. The largest contraction coefficient (C_c) is set at the West

Entrance due the approximate 135 degree bend approaching the entrance. The East entrance has the next largest Cc with a 90 degree approach bend. The South entrance has the lowest Cc as there is no approach bend. The contraction loss coefficients Cc shown listed in Table 2.

Table 2 – Contraction Coefficients

Contraction Coefficients	
East	0.07
West	0.14
South	0.03

v. Comparison of Recorded Fish Unit Discharge versus Estimated Fish Unit Discharge form the Model

The model is used to estimate the required fish unit discharge by estimating the entrance discharge from given weir settings and entrance heads, minus the upper ladder flow 109 cfs. The magnitude of average difference between recorded and estimated fish unit discharges is within 0.1% with a standard deviation of 306 cfs. A standard error of the estimate is 254 cfs, or 5.1% of the average recorded fish unit discharge. The summary statistics for each year of data collection is shown in Table 3 .

A graph of the sum fish unit discharge versus sum entrance discharge minus fish ladder (109 cfs) flow is shown in Figure 2.

Table 3 – Summary Statistics of the Recorded versus Estimated Fish Unit Discharge

Years	2011-12	2014	2015	2017 single	Average
Ave. ED - QL	4,784	5,217	5,023	2,739	4,974
Ave. FU	4,881	5,177	4,980	2,623	4,977
Ave. Diff	-97	40	43	116	-3
% of Ave. FU	-2.0%	0.8%	0.9%	4.4%	-0.1%
SD Daily Diff	390	246	189	94	306
% of Ave. FU	8.0%	4.7%	3.8%	3.6%	6.2%
Stand Error	244	138	59	47	254
% of Ave. FU	5.0%	2.7%	1.2%	1.8%	5.1%
		R ² =		0.679	

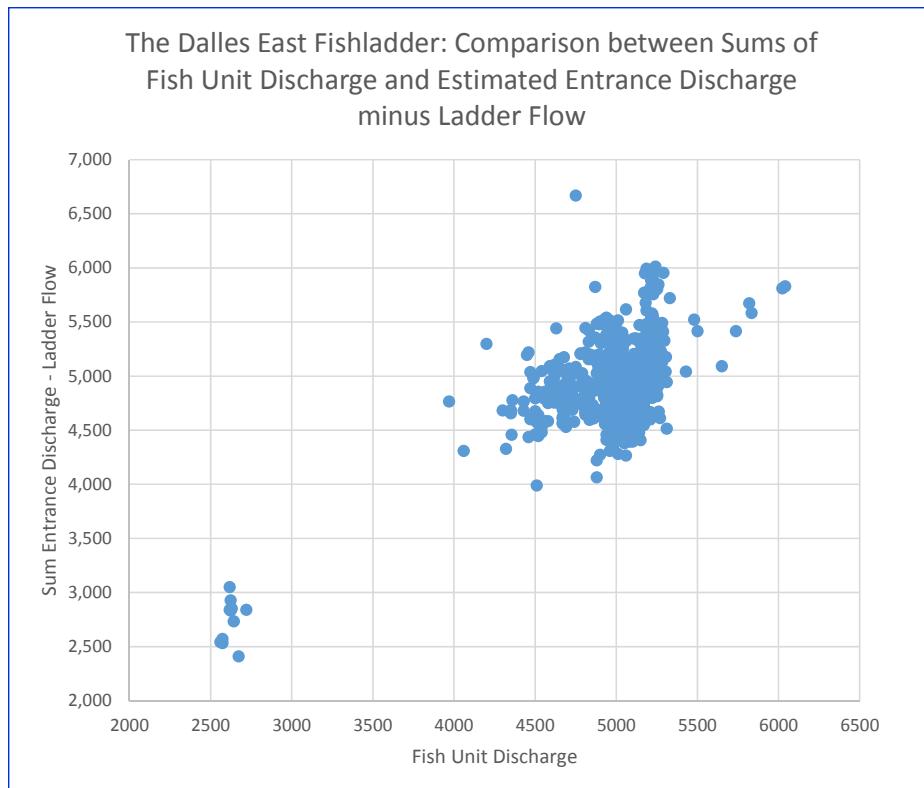


Figure 2 – Comparison of Sums of Fish Unit Discharge and Estimated Sum of Entrance Discharges minus Ladder Flow

Factors contributing to the differences include calibration error, hydraulic transients moving through the system and possible data errors. For example, the project biologist reported that there have been occasions when the dials showing the positions of some entrance weirs did not correctly report their actual positions.

4. Estimated Difference between the AWS Channel Gage and Tailwater Elevation

The net head of the fish turbines is the difference between the forebay and the head in the AWS conduit into which the FU discharge. The head at the AWS 'Channel' gage is routinely 9 - 12 feet higher than the daily project tailwater (USGS gage) and is assumed to be a function of the square of the sum of the fish unit discharge. The equation and graph of the estimated difference versus measured difference is shown below:

$$AWS\ Head - Project\ Tailwater = C \cdot Q_{FU}^2$$

$$Q_{FU} = \text{Sum Fish Unit Discharge (cfs)}$$

$$C = 4.44 \cdot 10^{-7} \frac{ft}{cfs^2}$$

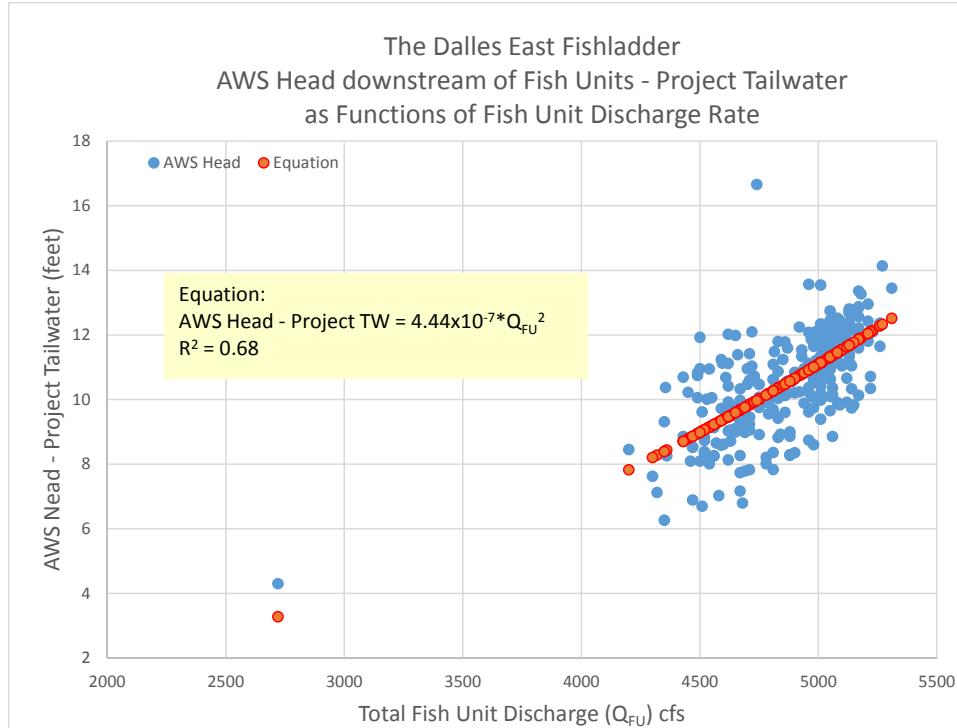


Figure 3 – Comparison of Estimated and Recorded Differences between AWS Head and Project Tailwater

As the tailwater becomes higher, the overall hydraulic efficiency of the AWS system becomes higher as additional lower ladder diffusers come on line. The trend showing the decreased headloss as a function of higher tailwater is shown in the figure below. Attempts to improve the relationship using multivariate regression did not lead to a significant improvement in the correlation.

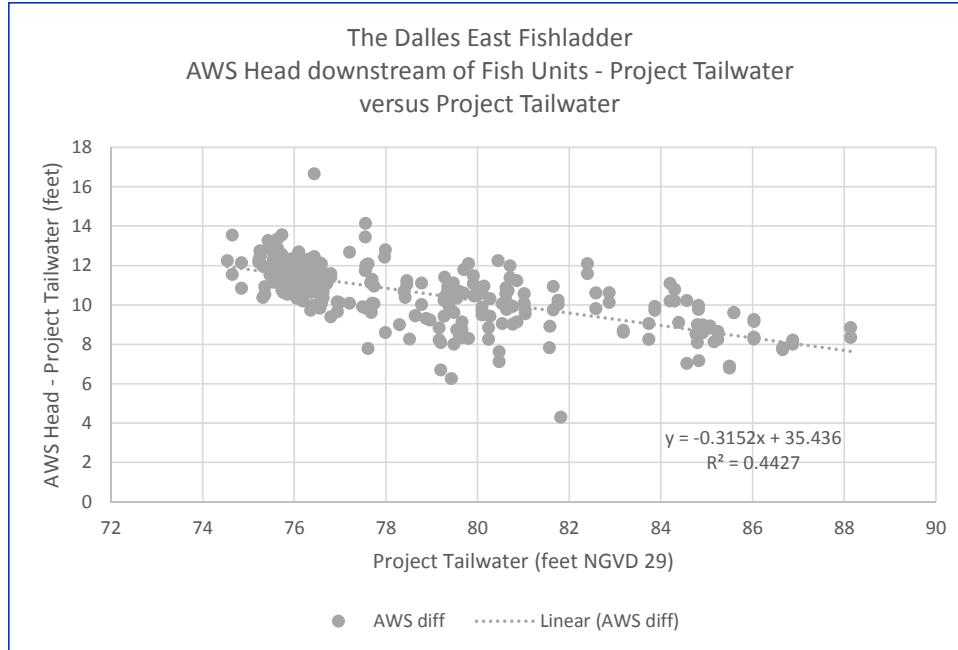


Figure 4 – Comparison of Estimated and Recorded Differences between AWS Head and Project Tailwater

Additional correlations were made with recorded data from the East, West and South entrance tailwater elevations. The best correlation was with the East entrance tailwater elevation.

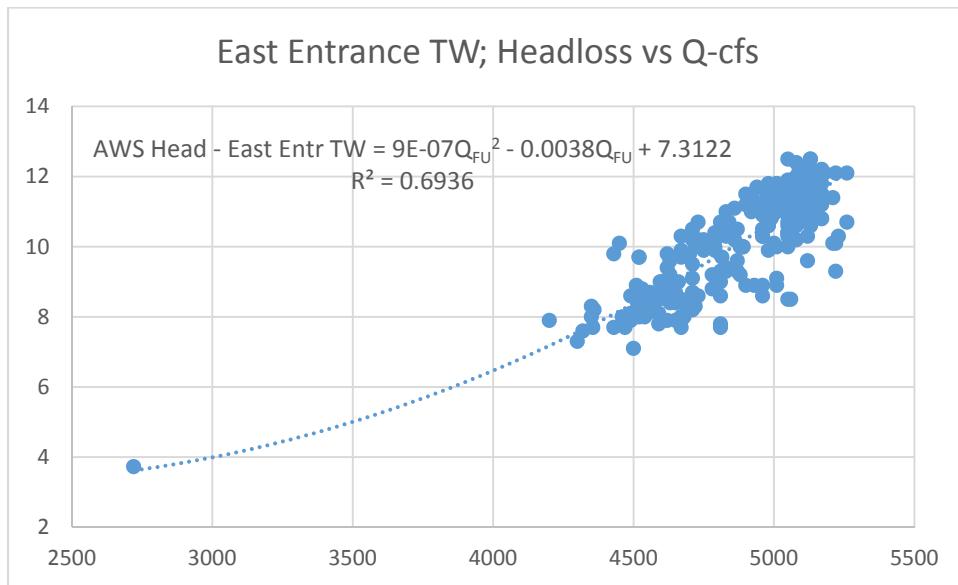


Figure 5 – Comparison of Estimated and Recorded Differences between AWS Head and East Entrance Tailwater

5. Criteria for Fish Unit Discharge

The following criteria were developed to provide criteria or potential targets for which the upgraded discharge capacities of fish units.

1. Marginally meet entrance criteria with a single FU operation
 - a. 6 entrance weirs open at 8.1 feet submergence, 2 weirs at each entrance location
 - b. Entrance head = 1.1 feet at each entrance
2. Reliably meet entrance criteria in combination with the AWS backup operation.
 - a. 6 entrance weirs open, 2 weirs at each entrance location
 - b. East entrance weirs open at 9.0 feet submergence
 - c. West and South entrance weirs open at 8.5 feet submergence
 - d. Entrance head = 1.5 feet at each entrance
 - e. 1400 cfs contribution from AWS backup system
3. Meet full fisheries criteria in combination with the AWS backup operation.
 - a. Same as above except total AWS discharge = 5000 cfs.
4. Meet Target #2 (entrance criteria) without contribution from AWS backup system
5. Meet Target #3 (full criteria) without contribution from AWS backup system.

In the early PDT discussions, it was acknowledged that targets No 4 and 5 were both infeasible without major structural modifications and unnecessary.

A review of the operations at low tailwater elevations ranging between 74 – 76 feet from 2014-2016, and 2011 indicate a total fish unit discharge of 5000 cfs is required to meet full fisheries criteria. At the same tailwater levels, this FU discharge should supply enough flow for entrance submergence levels of about 11.5 feet at the East, 9.5 feet at the West and 8.5 feet at the south entrances, all at 1.5 feet of entrance head. Given equivalent entrance parameters (submergence & head), the largest flow rates will be required at the lower tailwater elevations. At higher tailwater elevations, the same flow will pass through entrances at deeper weir submergences, the only remaining possible concern is whether channel velocity is maintained. A review of 2017 data at relatively high tailwater elevations showed that channel velocities were well within criteria under fish unit operations of about 4500-4600 cfs.

Based on the model, the results of the cases are the following:

1. Minimally meeting entrance criteria with single FU unit:
 - a. 3220 cfs at low tailwater
 - b. 2930 cfs at high tailwater
2. Reliably meet entrance criteria in combination with the AWS backup operation.
 - a. 4320 cfs total
 - b. 2920 cfs single FU unit
3. Meet full fisheries criteria in combination with the AWS backup operation.
 - a. 5000 cfs total
 - b. 3600 cfs single FU unit
4. Meet Target #2 (entrance criteria) without contribution from AWS backup system
 - a. 4320 cfs from single Fish unit

5. Meet Target #3 (full criteria) without contribution from AWS backup system.
 - a. 5000 cfs form single Fish unit

The flow criteria for Cases 1 and 2 were based on results from the hydraulic model, which estimates the required fish unit flow as a function of the sum entrance discharge less upper ladder flow. For each case, the estimated and recorded fish unit discharges were compared from data taken from similar magnitudes (2500-3000 for Case 1, 4000-4500 cfs for case 2). The estimated predicted Fish Unit discharges were adjusted upwards by a percentage based on the standard error of the estimates divided by the average recorded fish unit discharge from the data samples. The adjustments were made to account for the variability between the predicted versus recorded fish unit discharge and provide additional assurance that the criteria as specified would be met in the event that such operations will be required.

Required fish unit discharge = estimated fish unit discharge $\times (1 + SE/Average Q_{FU})$

Estimated Fish unit discharge = estimated sum entrance discharge – upper ladder flow

Upper ladder flow = 109 cfs

SE = standard error of the estimate between the estimated and recorded fish unit discharges with data sample

Average Q_{FU} = average recorded fish unit discharge within data sample

Case 1 data samples include estimated or recorded between 2500-3000 cfs (single unit)

Case 2 data samples include estimated or recorded between 4000-4500 cfs (dual unit, low flow)

6. References

Brater, E. F., King, H. W., *Handbook of Hydraulics*, 1976

Northwest Hydraulic Consultants (1995), *Hydraulic Evaluation of the East Fishway Adult Bypass System*

USACE CENWP-EC-HD and Cook Consulting (2002), *John Day North Fish Ladder Evaluation Study Report*.

USACE, CENWP-EC-H (2008), *The Dalles Fishladder Model*

CENWP-EC-HD

Stephen Schlenker, Hydraulic Engineer

Martin Hansen, Hydraulic Engineer

Gabe Asch, Engineer-in-Training

Appendix A Item 2

TRIP REPORT: The Dalles Dam – Field Trip for East Fish Ladder (EFL) /Fish Unit (FU) Water Surface Levels and other Measurements on April 25 2017

Date prepared: 26 April 26, 2017

Location: The Dalles Dam vicinity – from the South EFL Entrance to the Junction Pool and Forebay above the two 5 MW Fish Unit Units

Inspection Date: 25 April 2017, departed 8:00 AM, on-site between 1000 to 1400 hours

1. Participants and other information

Dan Watson-ME, CENWP-EC-HDC

Andrew Braun, EIT, HDC

Martin P. Hansen, P.E., CENWP-EC-HD

Gabriel Asch, EIT, HD

James Schroeder-TL

Supporting Dalles Project Personnel: – Bob Cordie and others

Schedule – the breakdown of the itinerary follows:

- 10:00 to 10:30 Discussions in Bob Cordie's office
- 10:30 to 12:00 Field collection of measurements from TW to FB for FU, per HDC
- 12:00 to 1:30 Water-surface measurements for the S., W., E. Entrance to the EFL and spot measurements in the Junction Pool, located u/w of the East Entrance.
- 1:30 to 2:00 On-hold for Conference Call, then departed to Portland. Arrived 4:00 PM

2. Site Conditions during Inspection:

The weather was mild, with overcast skies and some broken cloud cover, with no wind and some sunshine. Visibility was good. Temperature was about 60 deg. F. Releases from the 13 operating main units in the Powerhouse were 121.8 kCFS. Spillway releases were 201.3 kCFS. Flow in the fish ladder and Ice Chute Bypass was about 100 cfs and 4904 cfs respectively.

3. Introduction and General Description

For the TW and FB measurements for the single, operating FU #1, all listed participants worked as a group. FU #2 was not generating due to apparent exciter problems. The HD staff (Hansen + Asch) then separately undertook the EFL entrance measurements and also for the Junction Pool. A list of requested readings follows at the end of the report. Also see Appendices for further information, including the numeric water surface elevations, determined by measurements using the 'Solinst' water level meters, Model 101. Bob Cordie was quizzed about the operation settings of the bypass Ice Chute. The seasonal pattern will now be incorporated into the database on flows. The Electronic Technician was also queried about the Radar sensing units located by each of the Main Units and likewise in the afterbay. A print was provide which will be marked up showing the location.

4. Requested measurements at TDA by HDC and HD:

The follow requested measurements were made, consistent with safety and location of guard rails. Follow-up will be needed to determine the elevation of the concrete deck at the South Entrance to the EFL.

- (A) FB, Water Elevation, both units
- (B) FB, (inside gate slots) Water Elevation, (both sides, both units)
- (C) Turbine exit, Stop-Log slot water elevation (both sides, both units)
- (D) Fishway water elevation - (from ~~the current collection point~~ The Dalles PW Turbines Phase IA, 05/18)
- (E) TW water elevation (immediately outside Units 1 and 2)
- (F) Unit Info on the HMI for both units during data collection, before,

during and after.

1. Entrances

South entrance readings: per photographic record
TW: 81.5 ft, weir crest: 72.9 ft, 'Channel elevation: 83.10 ft
CH-TW: (elevation difference) 0.9 ft
S1: closed @ 82.6 ft, S2: open @ crest = 72.9
West entrance readings: per photographic record
TW: 82.0 ft, weir crest: 72.9 ft, 'Channel elevation: 83.20 ft
CH-TW: (elevation difference) 1.2 ft
W1: open @ crest = 73.6 ft, W2:open @ crest = 73.6, E3: closed @ w/
bulkhead = 73.6 ft.
East Entrance: per photographic record
TW: 82.4 ft, weir crest: 72.9 ft, 'Channel elevation: 83.30 ft
CH-TW: (elevation difference) 0.9 ft
E1: closed @ 83.4 ft, E2: open @ crest = 74.4, E3: open @ crest = 74.3 ft

2. AWS turbines: {requested data & tabulated data noted below:}

FU1 Set point and instantaneous. (is the 'instantaneous, moving around a lot ?, {staying on one side of the setpoint})
FU2 same as above
Total setpoint and instantaneous
Head at downstream AWS gage (is it steady?)
Per photographic record:
FU1: forebay=158.31' fish channel level=86.13' flow setpoint=2628 cfs
MW setpoint=15.0 mw speed= 200.0 rpm frequency=59.9 Hz @ 100% gate
FU2: not generating
Per manual reading which match, more or less:
FB (manual)=158.55' control rm: FWfb=158.52, Unit 22 fb=158.65 (ok)
Forebay @ roller-gates=156.4 TW Fishway=82.8, TW by stop-log slots=86.7
Stilling Well to AWS conduit=86.3' per Stevens w.s. tape recorder
TW(manual) d/s=80.85' cntrl rm: FU1 tw=80.68', unit 22 tw=80.8'

3. Junction pool: Recorded in the Gabriel Asch 'Rite-in-Rain' fieldbook

Weir elevation to east entrance channel
Water level elevation upstream of the weir in JP
Water level elevation in east entrance (i.e. 'channel' required under no.1)

4. Forebay elevation: Recorded in the Gabriel Asch 'Rite-in-Rain' fieldbook

5. Estimated number of PH units operating, and total PH discharge if available.
13 units generating - discharging 121.8 KCFS.

5. Conclusions

The HDC staff (Watson + Braun) repeated the w.s. measurements in the forebay and tailrace slot that leads to the Auxiliary Water Supply conduit which supplies the EFL entrances and the lower portion of the Fish Ladder via diffusor gratings. The initial readings and subsequent FB & TW readings proved consistent with the PH operators screens and other display screens.

6. Recommendations

No recommendations are provided at this time. HD will undertake further hydraulic analyses and then determine if more measurements are in order.

7. Selective Photos from 04-25-2017 site visit – below: { see other images @

\\nwd\\nwp\\ETDS\\Engineering_Division\\CENWP-EC-H\\CENWP-EC-

HD\\Internal_Files\\Inspections\\TDA visit_04-25-2017\\Photos }

Location on 111.5 ft. deck of TW reading for E. Entrance.

Note two weirs are discharging, E3, E2 (E1 on the right nearest to the Powerhouse is closed).

Photo 1: East EFL Entrance – looking D/S w/ The Dalles, OR in the distant background.

Three readings taken u/s and d/s from bridge deck, at end of Junction Pool, bridge deck curbing elev.= 112.0 ft..

Photo 2: Looking u/s toward Junction Pool, w/ fish ladder to the left of the photo.

East EFL Entrance is just outside of the photo to the right.

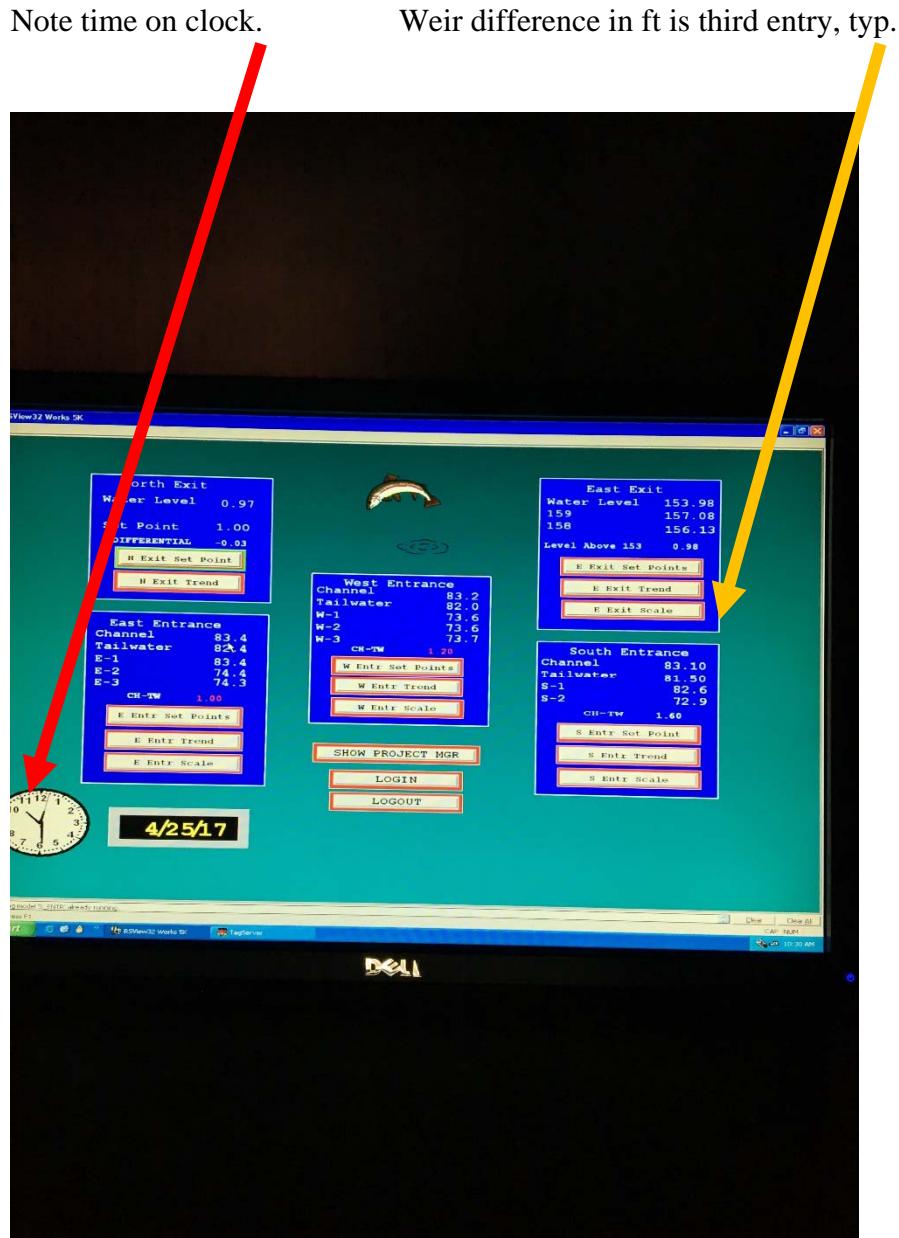


Photo 3: Operators status screen within Powerhouse.

Photo 4: Panel outside of PH showing gate position in EFL entrances, typ.

Martin P. Hansen, P.E.
Hydraulic Design Section – USACE, Portland Oregon District

Cc: S. Schlenker, M. Hansen, G. Asch
D. Watson, Andrew Braun

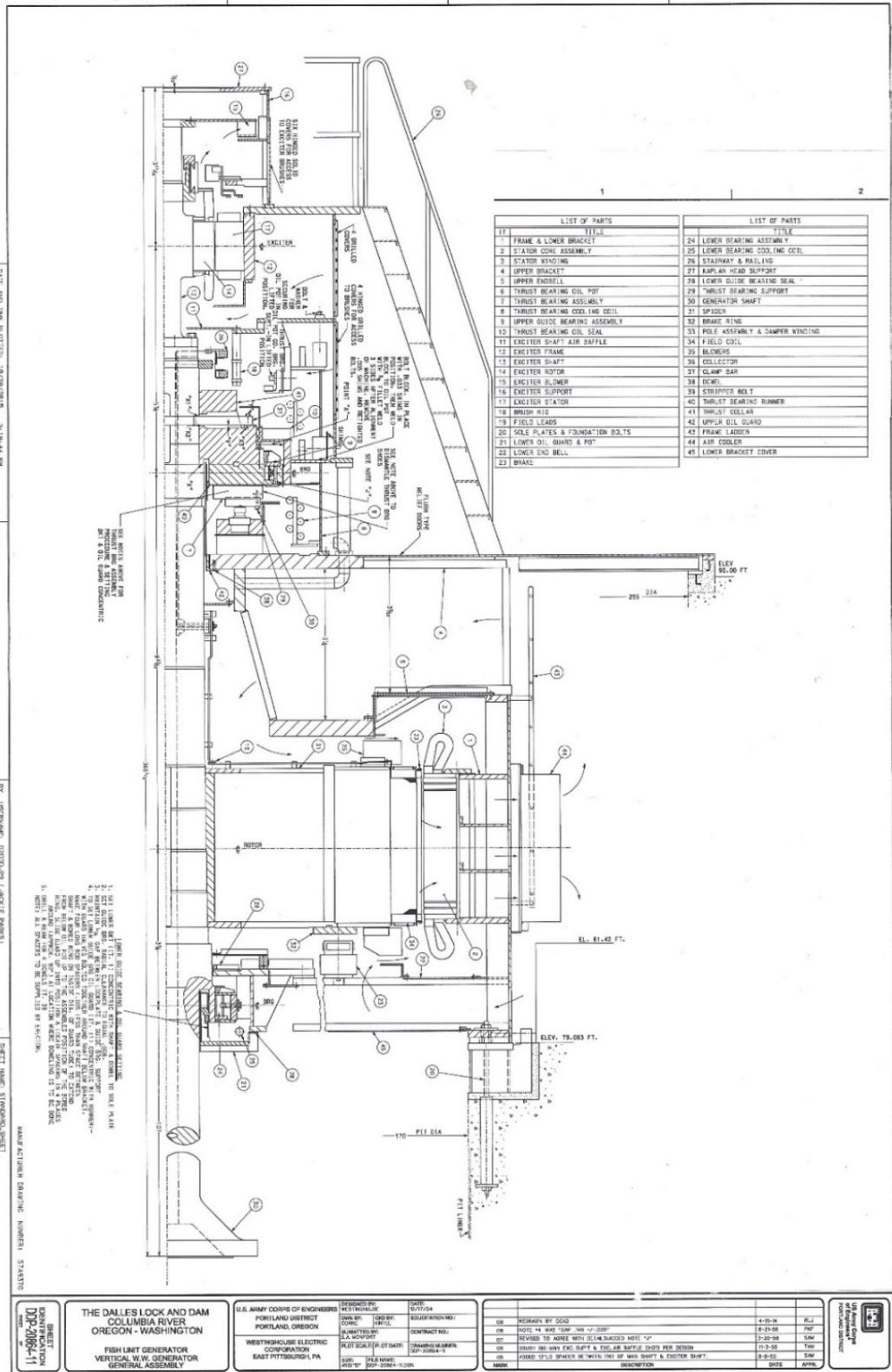
Appendices: { provided as attachments }

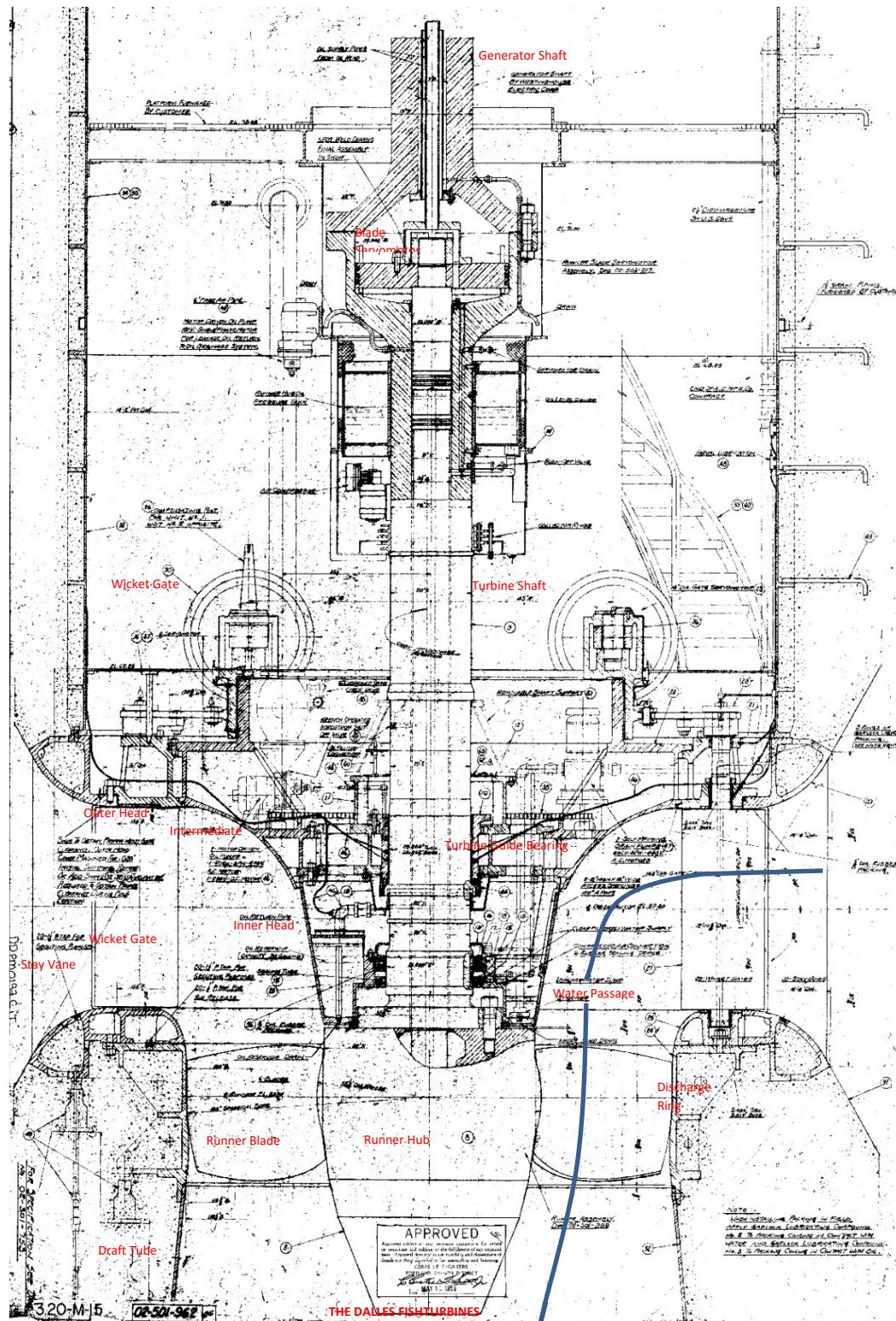
- A. Dalles (TDA) Fishway / Fishwater Unit Measurement Summary April 25, 2017 by Gabriel Asch
- B. TDA Diffuser Location and Numbering
- C. Photo Collage file – TDA field visit_photo-collage_04-25-2017.docx

References:

Water Control Manual – may need updating per ER-1110-2-240 & 1110-2-8156.
 Design Basis Memoranda
 Project drawings
 Survey datum sheet and location of survey control points – from Cliff Bondurant
 EM – Corps of Engineer's Engineering Manuals
<http://www.publications.usace.army.mil/USACE-Publications/Engineer-Manuals/>

Other Remarks & Notes: A Sea-Lion was noted swimming in the Tailwater area near the E. Entrance of the EFL. Elevations shown are referenced to NGVD29 Datum. To convert from NGVD29 to NAVD88, add 3.6 feet.


Pertinent Facts: The Dalles Dam project:


Location/Stream: Columbia River at river mile (RM)	192
Drainage Area, sq. miles	237,000
Dam Completion Date:	1957
Normal Pool elevation:	160 ft
Min. power pool elev.:	155 ft
Approx. operating pool elevations:	162.5 ft. to 155 ft.
Approx. range of tailwater elevations, min. to max.:	69.5 to 97.2 ft
Spillway Type Concrete gravity, gate controlled	
Dam Length (overall)	1,447 ft
Central (South) Non-overflow dam between spillway and powerhouse.	1,527 ft
Gates (23) 50-ft tainter gates	
Crest elevation	121.0 ft
Deck elevation	185.0 ft
Design Discharge (pool el. 182.3)	2,290,000 cfs
Maximum discharge to date – May 1948	1,240,000 cfs
Navigation Lock Type: Single lift	
Normal lift	87.5 ft
Maximum lift	90.5 ft
Inside clearance – width and length	86 x 675 ft
Minimum depth over lower sill	15 ft
Depth over upper sill (pool el. 160)	20 ft
Valving in conduits: tainter gates	12 ft x 14 ft
Miter Gates: up-stream & down-stream	54 ft x 106 ft
Powerhouse Length:	2,089 ft
Turbine type & number of units	Kaplan automatic-adjustable blades, 22 main units
Turbine capacity	14 @ 123,000 hp at 81 ft head 8 @ 140,000 hp at 81 ft head 1,806,800 kW total generating capacity
East non-overflow dam (powerhouse to closure dam)	Length 452 ft
Rockfill closure dam	Length 2,017 ft
Total length of dam	8,735 ft

Appendix B

DRAWINGS

Appendix C, High Level Alternative Costs

Alternative A , In Kind Runner Replacement, Same Rated Output			
		First Unit	Second Unit
1	New Kaplan Runner	\$1,546,000	\$1,546,000
2	Turbine Model Test	\$1,500,000	---
3	Site Mob/Demob	\$132,727	\$132,727
4	Disassembly of Hydraulic Turbine	\$1,478,577	\$1,478,577
5	Reassembly of Hydraulic turbine	\$663,636	\$663,636
6	Pre-Disassembly testing	\$177,734	\$177,734
7	Disassem/Assembly Equipment	\$10,000	\$3,017
8	Painting & Lead Abatement	\$100,264	\$100,264
9	Furnish New Draft Tube Platform	\$83,099	\$83,099
10	Inspect Piston, Blade Servo, Operating rod	\$5,000	\$5,000
11	Furnish New Piston and Rod Rigs	\$50,720	\$50,720
12	Furnish Superbolt Nuts for Piston Rod	\$14,513	\$14,513
13	Inspect/Refurbish Gen/Turbine Shafts	\$60,611	\$60,611
14	Bearing Refurbishment	\$313,588	\$313,588
15	Furnish New Wicket Gates	\$701,179	\$701,179
16	Remove Wicket Gate Grease System	\$20,000	\$20,000
17	Furnish Greaseless Bushings	\$47,078	\$47,078
18	Refurbish Wicket Gate Operating System	\$25,712	\$25,712
19	Refurb Outer Headcover, Bottom Ring, Stay Ring, Operating Ring, Air Valve	\$275,700	\$275,700
20	Refurb Wicket Gate Servos	\$86,242	\$86,242
21	Line Bore Wicket Gate Stem Bushing Bores	\$23,010	\$23,010
22	Furnish New Packing Box	\$24,792	\$24,792
23	Furnish New Shaft Sleeve, Mandrel & Clamps	\$27,500	\$26,562
24	Discharge Ring Stainless Steel Overlay and Cav Repair	\$730,989	\$730,989
25	Replace TGB Oil System	\$23,670	\$23,670
26	Furnish New TB External Oil Cooler	\$200,000	\$200,000
27	Braking System Refurbishment	\$33,017	\$33,017
28	Braking Ring Inspection and Refurbishment	\$15,000	\$15,000
29	Shaft Study	---	---
30	Generator Rewind	\$2,000,000	\$2,000,000
31	Exciter	\$300,000	\$300,000
32	Generator Surface Air Coolers	\$80,000	\$80,000
33	New Stator Core	\$600,000	\$600,000
34	Rotor Pole Refurbishment	\$300,000	\$300,000
35	Generator Uprate Study		---
	SubTotal	\$11,650,358.00	\$10,142,437.00
	Total	\$21,792,795.00	

Alternative B , Propeller Runner, Same Rated Output as Existing			
		First Unit	Second Unit
1	New Kaplan Runner	\$1,013,000	\$1,013,000
2	Turbine Model Test	\$1,000,000	---
3	Site Mob/Demob	\$132,727	\$132,727
4	Disassembly of Hydraulic Turbine	\$1,478,577	\$1,478,577
5	Reassembly of Hydraulic turbine	\$663,636	\$663,636
6	Pre-Disassembly testing	\$177,734	\$177,734
7	Disassem/Assembly Equipment	\$10,000	\$3,017
8	Painting & Lead Abatement	\$100,264	\$100,264
9	Furnish New Draft Tube Platform	\$83,099	\$83,099
10	Inspect Piston, Blade Servo, Operating rod	---	---
11	Furnish New Piston and Rod Rigs	---	---
12	Furnish Superbolt Nuts for Piston Rod	---	---
13	Inspect/Refurbish Gen/Turbine Shafts	\$60,611	\$60,611
14	Bearing Refurbishment	\$313,588	\$313,588
15	Furnish New Wicket Gates	\$701,179	\$701,179
16	Remove Wicket Gate Grease System	\$20,000	\$20,000
17	Furnish Greaseless Bushings	\$47,078	\$47,078
18	Refurbish Wicket Gate Operating System	\$25,712	\$25,712
19	Refurb Outer Headcover, Bottom Ring, Stay Ring, Operating Ring, Air Valve	\$275,700	\$275,700
20	Refurb Wicket Gate Servos	\$86,242	\$86,242
21	Line Bore Wicket Gate Stem Bushing Bores	\$23,010	\$23,010
22	Furnish New Packing Box	\$24,792	\$24,792
23	Furnish New Shaft Sleeve, Mandrel & Clamps	\$27,500	\$26,562
24	Discharge Ring Stainless Steel Overlay and Cav Repair	\$730,989	\$730,989
25	Replace TGB Oil System	\$23,670	\$23,670
26	Furnish New TB External Oil Cooler	\$200,000	\$200,000
27	Braking System Refurbishment	\$33,017	\$33,017
28	Braking Ring Inspection and Refurbishment	\$15,000	\$15,000
29	Shaft Study	---	---
30	Generator Rewind	\$2,000,000	\$2,000,000
31	Exciter	\$300,000	\$300,000
32	Generator Surface Air Coolers	\$80,000	\$80,000
33	New Stator Core	\$600,000	\$600,000
34	Rotor Pole Refurbishment	\$300,000	\$300,000
35	Generator Uprate Study	---	---
	SubTotal	\$10,547,125.00	\$9,539,204.00
	Total	\$20,086,329.00	

Alternative C , Replacement Turbine <i>Oil-Filled</i> Hub, Uprate to Shaft Limit			
		First Unit	Second Unit
1	New Kaplan Runner	\$1,546,000	\$1,546,000
2	Turbine Model Test	\$1,500,000	---
3	Site Mob/Demob	\$132,727	\$132,727
4	Disassembly of Hydraulic Turbine	\$1,478,577	\$1,478,577
5	Reassembly of Hydraulic turbine	\$663,636	\$663,636
6	Pre-Disassembly testing	\$177,734	\$177,734
7	Disassem/Assembly Equipment	\$10,000	\$3,017
8	Painting & Lead Abatement	\$100,264	\$100,264
9	Furnish New Draft Tube Platform	\$83,099	\$83,099
10	Inspect Piston, Blade Servo, Operating rod	\$5,000	\$5,000
11	Furnish New Piston and Rod Rigs	\$50,720	\$50,720
12	Furnish Superbolt Nuts for Piston Rod	\$14,513	\$14,513
13	Inspect/Refurbish Gen/Turbine Shafts	\$60,611	\$60,611
14	Bearing Refurbishment	\$313,588	\$313,588
15	Furnish New Wicket Gates	\$701,179	\$701,179
16	Remove Wicket Gate Grease System	\$20,000	\$20,000
17	Furnish Greaseless Bushings	\$47,078	\$47,078
18	Refurbish Wicket Gate Operating System	\$25,712	\$25,712
19	Refurb Outer Headcover, Bottom Ring, Stay Ring, Operating Ring, Air Valve	\$275,700	\$275,700
20	Refurb Wicket Gate Servos	\$86,242	\$86,242
21	Line Bore Wicket Gate Stem Bushing Bores	\$23,010	\$23,010
22	Furnish New Packing Box	\$24,792	\$24,792
23	Furnish New Shaft Sleeve, Mandrel & Clamps	\$27,500	\$26,562
24	Discharge Ring Stainless Steel Overlay and Cav Repair	\$730,989	\$730,989
25	Replace TGB Oil System	\$23,670	\$23,670
26	Furnish New TB External Oil Cooler	\$200,000	\$200,000
27	Braking System Refurbishment	\$33,017	\$33,017
28	Braking Ring Inspection and Refurbishment	\$15,000	\$15,000
29	Shaft Study	---	---
30	Generator Rewind	\$2,000,000	\$2,000,000
31	Exciter	\$300,000	\$300,000
32	Generator Surface Air Coolers	\$80,000	\$80,000
33	New Stator Core	\$600,000	\$600,000
34	Rotor Pole Refurbishment	\$300,000	\$300,000
35	Generator Uprate Study	\$400,000	---
	SubTotal	\$12,050,358.00	\$10,142,437.00
	Total	\$22,192,795.00	

Alternative D , Replacement Turbine <i>Oil-Free</i> Hub, Uprate to Shaft Limit			
		First Unit	Second Unit
1	New Kaplan Runner	\$1,792,000	\$1,792,000
2	Turbine Model Test	\$1,500,000	---
3	Site Mob/Demob	\$132,727	\$132,727
4	Disassembly of Hydraulic Turbine	\$1,478,577	\$1,478,577
5	Reassembly of Hydraulic turbine	\$663,636	\$663,636
6	Pre-Disassembly testing	\$177,734	\$177,734
7	Disassem/Assembly Equipment	\$10,000	\$3,017
8	Painting & Lead Abatement	\$100,264	\$100,264
9	Furnish New Draft Tube Platform	\$83,099	\$83,099
10	Inspect Piston, Blade Servo, Operating rod	\$5,000	\$5,000
11	Furnish New Piston and Rod Rigs	\$50,720	\$50,720
12	Furnish Superbolt Nuts for Piston Rod	\$14,513	\$14,513
13	Inspect/Refurbish Gen/Turbine Shafts	\$60,611	\$60,611
14	Bearing Refurbishment	\$313,588	\$313,588
15	Furnish New Wicket Gates	\$701,179	\$701,179
16	Remove Wicket Gate Grease System	\$20,000	\$20,000
17	Furnish Greaseless Bushings	\$47,078	\$47,078
18	Refurbish Wicket Gate Operating System	\$25,712	\$25,712
19	Refurb Outer Headcover, Bottom Ring, Stay Ring, Operating Ring, Air Valve	\$275,700	\$275,700
20	Refurb Wicket Gate Servos	\$86,242	\$86,242
21	Line Bore Wicket Gate Stem Bushing Bores	\$23,010	\$23,010
22	Furnish New Packing Box	\$24,792	\$24,792
23	Furnish New Shaft Sleeve, Mandrel & Clamps	\$27,500	\$26,562
24	Discharge Ring Stainless Steel Overlay and Cav Repair	\$730,989	\$730,989
25	Replace TGB Oil System	\$23,670	\$23,670
26	Furnish New TB External Oil Cooler	\$200,000	\$200,000
27	Braking System Refurbishment	\$33,017	\$33,017
28	Braking Ring Inspection and Refurbishment	\$15,000	\$15,000
29	Shaft Study	---	---
30	Generator Rewind	\$2,000,000	\$2,000,000
31	Exciter	\$300,000	\$300,000
32	Generator Surface Air Coolers	\$80,000	\$80,000
33	New Stator Core	\$600,000	\$600,000
34	Rotor Pole Refurbishment	\$300,000	\$300,000
35	Generator Uprate Study	\$400,000	---
36	SubTotal	\$12,296,358.00	\$10,388,437.00
	Total	\$22,684,795.00	

Alternative E , Replacement Turbine , Propeller Type Runner, Uprate to Shaft Limit			
		First Unit	Second Unit
1	New Kaplan Runner	\$1,013,000	\$1,013,000
2	Turbine Model Test	\$1,000,000	---
3	Site Mob/Demob	\$132,727	\$132,727
4	Disassembly of Hydraulic Turbine	\$1,478,577	\$1,478,577
5	Reassembly of Hydraulic turbine	\$663,636	\$663,636
6	Pre-Disassembly testing	\$177,734	\$177,734
7	Dissem/Assembly Equipment	\$10,000	\$3,017
8	Painting & Lead Abatement	\$100,264	\$100,264
9	Furnish New Draft Tube Platform	\$83,099	\$83,099
10	Inspect Piston, Blade Servo, Operating rod	---	---
11	Furnish New Piston and Rod Rigs	---	---
12	Furnish Superbolt Nuts for Piston Rod	---	---
13	Inspect/Refurbish Gen/Turbine Shafts	\$60,611	\$60,611
14	Bearing Refurbishment	\$313,588	\$313,588
15	Furnish New Wicket Gates	\$701,179	\$701,179
16	Remove Wicket Gate Grease System	\$20,000	\$20,000
17	Furnish Greaseless Bushings	\$47,078	\$47,078
18	Refurbish Wicket Gate Operating System	\$25,712	\$25,712
19	Refurb Outer Headcover, Bottom Ring, Stay Ring, Operating Ring, Air Valve	\$275,700	\$275,700
20	Refurb Wicket Gate Servos	\$86,242	\$86,242
21	Line Bore Wicket Gate Stem Bushing Bores	\$23,010	\$23,010
22	Furnish New Packing Box	\$24,792	\$24,792
23	Furnish New Shaft Sleeve, Mandrel & Clamps	\$27,500	\$26,562
24	Discharge Ring Stainless Steel Overlay and Cav Repair	\$730,989	\$730,989
25	Replace TGB Oil System	\$23,670	\$23,670
26	Furnish New TB External Oil Cooler	\$200,000	\$200,000
27	Braking System Refurbishment	\$33,017	\$33,017
28	Braking Ring Inspection and Refurbishment	\$15,000	\$15,000
29	Shaft Study	---	---
30	Generator Rewind	\$2,000,000	\$2,000,000
31	Exciter	\$300,000	\$300,000
32	Generator Surface Air Coolers	\$80,000	\$80,000
33	New Stator Core	\$600,000	\$600,000
34	Rotor Pole Refurbishment	\$300,000	\$300,000
35	Generator Uprate Study	\$400,000	---
36	SubTotal	\$10,947,125.00	\$9,539,204.00
	Total	\$20,486,329.00	

Alternative F, Replacement Turbine Oil-Filled Hub, Uprate Above Shaft Limit			
		First Unit	Second Unit
1	New Kaplan Runner	\$1,546,000	\$1,546,000
2	Turbine Model Test	\$1,500,000	---
3	Site Mob/Demob	\$132,727	\$132,727
4	Disassembly of Hydraulic Turbine	\$1,478,577	\$1,478,577
5	Reassembly of Hydraulic turbine	\$663,636	\$663,636
6	Pre-Disassembly testing	\$177,734	\$177,734
7	Disassem/Assembly Equipment	\$10,000	\$3,017
8	Painting & Lead Abatement	\$100,264	\$100,264
9	Furnish New Draft Tube Platform	\$83,099	\$83,099
10	Inspect Piston, Blade Servo, Operating rod	\$5,000	\$5,000
11	Furnish New Piston and Rod Rigs	\$50,720	\$50,720
12	Furnish Superbolt Nuts for Piston Rod	\$14,513	\$14,513
13	Inspect/Refurbish Gen/Turbine Shafts	\$60,611	\$60,611
14	Bearing Refurbishment	\$313,588	\$313,588
15	Furnish New Wicket Gates	\$701,179	\$701,179
16	Remove Wicket Gate Grease System	\$20,000	\$20,000
17	Furnish Greaseless Bushings	\$47,078	\$47,078
18	Refurbish Wicket Gate Operating System	\$25,712	\$25,712
19	Refurb Outer Headcover, Bottom Ring, Stay Ring, Operating Ring, Air Valve	\$275,700	\$275,700
20	Refurb Wicket Gate Servos	\$86,242	\$86,242
21	Line Bore Wicket Gate Stem Bushing Bores	\$23,010	\$23,010
22	Furnish New Packing Box	\$24,792	\$24,792
23	Furnish New Shaft Sleeve, Mandrel & Clamps	\$27,500	\$26,562
24	Discharge Ring Stainless Steel Overlay and Cav Repair	\$730,989	\$730,989
25	Replace TGB Oil System	\$23,670	\$23,670
26	Furnish New TB External Oil Cooler	\$200,000	\$200,000
27	Braking System Refurbishment	\$33,017	\$33,017
28	Braking Ring Inspection and Refurbishment	\$15,000	\$15,000
29	Shaft Study	\$300,000	---
30	Generator Rewind	\$2,000,000	\$2,000,000
31	Exciter	\$300,000	\$300,000
32	Generator Surface Air Coolers	\$80,000	\$80,000
33	New Stator Core	\$600,000	\$600,000
34	Rotor Pole Refurbishment	\$300,000	\$300,000
35	Generator Uprate Study	\$400,000	---
36	SubTotal	\$12,350,358.00	\$10,142,437.00
	Total	\$22,492,795.00	

Alternative G, Replacement Turbine <i>Oil-Free</i> Hub, Uprate Above Shaft Limit			
		First Unit	Second Unit
1	New Kaplan Runner	\$1,792,000	\$1,792,000
2	Turbine Model Test	\$1,500,000	---
3	Site Mob/Demob	\$132,727	\$132,727
4	Disassembly of Hydraulic Turbine	\$1,478,577	\$1,478,577
5	Reassembly of Hydraulic turbine	\$663,636	\$663,636
6	Pre-Disassembly testing	\$177,734	\$177,734
7	Disassem/Assembly Equipment	\$10,000	\$3,017
8	Painting & Lead Abatement	\$100,264	\$100,264
9	Furnish New Draft Tube Platform	\$83,099	\$83,099
10	Inspect Piston, Blade Servo, Operating rod	\$5,000	\$5,000
11	Furnish New Piston and Rod Rigs	\$50,720	\$50,720
12	Furnish Superbolt Nuts for Piston Rod	\$14,513	\$14,513
13	Inspect/Refurbish Gen/Turbine Shafts	\$60,611	\$60,611
14	Bearing Refurbishment	\$313,588	\$313,588
15	Furnish New Wicket Gates	\$701,179	\$701,179
16	Remove Wicket Gate Grease System	\$20,000	\$20,000
17	Furnish Greaseless Bushings	\$47,078	\$47,078
18	Refurbish Wicket Gate Operating System	\$25,712	\$25,712
19	Refurb Outer Headcover, Bottom Ring, Stay Ring, Operating Ring, Air Valve	\$275,700	\$275,700
20	Refurb Wicket Gate Servos	\$86,242	\$86,242
21	Line Bore Wicket Gate Stem Bushing Bores	\$23,010	\$23,010
22	Furnish New Packing Box	\$24,792	\$24,792
23	Furnish New Shaft Sleeve, Mandrel & Clamps	\$27,500	\$26,562
24	Discharge Ring Stainless Steel Overlay and Cav Repair	\$730,989	\$730,989
25	Replace TGB Oil System	\$23,670	\$23,670
26	Furnish New TB External Oil Cooler	\$200,000	\$200,000
27	Braking System Refurbishment	\$33,017	\$33,017
28	Braking Ring Inspection and Refurbishment	\$15,000	\$15,000
29	Shaft Study	\$300,000	---
30	Generator Rewind	\$2,000,000	\$2,000,000
31	Exciter	\$300,000	\$300,000
32	Generator Surface Air Coolers	\$80,000	\$80,000
33	New Stator Core	\$600,000	\$600,000
34	Rotor Pole Refurbishment	\$300,000	\$300,000
35	Generator Uprate Study	\$400,000	---
	SubTotal	\$12,596,358.00	\$10,388,437.00
	Total	\$22,984,795.00	

Alternative H, Replacement Turbine , Propeller Type Runner, Uprate Above Shaft Limit			
		First Unit	Second Unit
1	New Kaplan Runner	\$1,013,000	\$1,013,000
2	Turbine Model Test	\$1,000,000	---
3	Site Mob/Demob	\$132,727	\$132,727
4	Disassembly of Hydraulic Turbine	\$1,478,577	\$1,478,577
5	Reassembly of Hydraulic turbine	\$663,636	\$663,636
6	Pre-Disassembly testing	\$177,734	\$177,734
7	Disassem/Assembly Equipment	\$10,000	\$3,017
8	Painting & Lead Abatement	\$100,264	\$100,264
9	Furnish New Draft Tube Platform	\$83,099	\$83,099
10	Inspect Piston, Blade Servo, Operating rod	---	---
11	Furnish New Piston and Rod Rigs	---	---
12	Furnish Superbolt Nuts for Piston Rod	---	---
13	Inspect/Refurbish Gen/Turbine Shafts	\$60,611	\$60,611
14	Bearing Refurbishment	\$313,588	\$313,588
15	Furnish New Wicket Gates	\$701,179	\$701,179
16	Remove Wicket Gate Grease System	\$20,000	\$20,000
17	Furnish Greaseless Bushings	\$47,078	\$47,078
18	Refurbish Wicket Gate Operating System	\$25,712	\$25,712
19	Refurb Outer Headcover, Bottom Ring, Stay Ring, Operating Ring, Air Valve	\$275,700	\$275,700
20	Refurb Wicket Gate Servos	\$86,242	\$86,242
21	Line Bore Wicket Gate Stem Bushing Bores	\$23,010	\$23,010
22	Furnish New Packing Box	\$24,792	\$24,792
23	Furnish New Shaft Sleeve, Mandrel & Clamps	\$27,500	\$26,562
24	Discharge Ring Stainless Steel Overlay and Cav Repair	\$730,989	\$730,989
25	Replace TGB Oil System	\$23,670	\$23,670
26	Furnish New TB External Oil Cooler	\$200,000	\$200,000
27	Braking System Refurbishment	\$33,017	\$33,017
28	Braking Ring Inspection and Refurbishment	\$15,000	\$15,000
29	Shaft Study	\$300,000	---
30	Generator Rewind	\$2,000,000	\$2,000,000
31	Exciter	\$300,000	\$300,000
32	Generator Surface Air Coolers	\$80,000	\$80,000
33	New Stator Core	\$600,000	\$600,000
34	Rotor Pole Refurbishment	\$300,000	\$300,000
35	Generator Uprate Study	\$400,000	---
	SubTotal	\$11,247,125.00	\$9,539,204.00
	Total	\$20,786,329.00	

APPENDIX D

Generator/Turbine Condition Assessment

HydroAmp

HYDROAMP TURBINE CONDITION ASSESSMENT

The following 4 pages show the HydroAmp condition assessment for the Fish Water turbine and governor. As shown in the report the turbine runners are both 60 years old and in marginal condition. The governors are new and are in good condition.

Tier 1 Condition Assessment

Turbine

Plant:	The Dalles	Unit:	F1 Type:	Kaplan
Manufacturer:	Partial Rehab Year (non runner):			Rated Power: (HP)
Rated Head:	(ft)	Discharge Diameter:	(ft)	Speed: (RPM)

Tier 1 Turbine Condition Assessment <i>(For Instructions on indicator scoring, please refer to the condition assessment guide)</i>				
No. Condition Indicator		Score	x Weighting Factor	= Total Score
1	In-Service Year	0	0.67	0
2	Partial Rehab Year (runner)	3	1.25	3.75
	Cavitation and Surface Damage			
3	Operation Limitations	3	0.5	1.5
4	Corrective Maintenance	1	0.5	0.5
Turbine Condition Index				5.8
				Marginal

Data Quality Indicator	10
------------------------	----

Tier 2 Turbine Condition Assessment <i>(For instructions on how to adjust the Tier 1 Condition Index (CI) by conducting Tier 2 tests or inspections, please refer to the condition assessment guide)</i>	
Total Tier 2 Adjustment:	▼
In this comment box, please list which of the Tier 2 tests or inspections you conducted and note the incremental adjustment for each that was used in calculating the total adjustment reported above:	

Certification Information

Last Assessment Date: **1/25/2017**

Evaluated By: **Caracciolo, Lou on 1/25/2017**

Approved By: **N/A**

Comment on Update: 12/2014 turbine integrity testing completed, no issues noted. 2015 OH, blade packing ring oil leaks repaired. 2014 Assessment: Blade cracks seem to be stable and in a area of compression. 2011 Assessment: Blade cracks continue even w/ periodic repair every 2 years.

Tier 1 Condition Assessment

Turbine

Plant: **The Dalles** Unit: **F2** Type: **Kaplan**

Manufacturer: **Partial Rehab Year (non runner):** **Rated Power: (HP)**
 Rated Head: (ft) Discharge Diameter: (ft) Speed: (RPM)

Tier 1 Turbine Condition Assessment (For Instructions on indicator scoring, please refer to the condition assessment guide)				
No. Condition Indicator		Score	x Weighting Factor	= Total Score
1	In-Service Year Partial Rehab Year (runner) Age: 60 years	0	0.67	0
2	Physical Condition Cracks Cavitation and Surface Damage	3	1.25	3.75
3	Operation Limitations	3	0.5	1.5
4	Corrective Maintenance	1	0.5	0.5
Turbine Condition Index			5.8	Marginal

Data Quality Indicator	10
------------------------	-----------

Tier 2 Turbine Condition Assessment (For instructions on how to adjust the Tier 1 Condition Index (CI) by conducting Tier 2 tests or inspections, please refer to the condition assessment guide)	
Total Tier 2 Adjustment:	<input checked="" type="checkbox"/>
In this comment box, please list which of the Tier 2 tests or inspections you conducted and note the incremental adjustment for each that was used in calculating the total adjustment reported above:	

Certification Information

Last Assessment Date: **1/25/2017**

Evaluated By: **Caracciolo, Lou on 1/25/2017**

Approved By: **N/A**

Comment on Update: Dec 2015 Turbine integrity testing completed, no issues noted. Normal maintenance frequency 2 years

HYDROAMP TURBINE CONDITION ASSESSMENT

Tier 1 Condition Assessment

Governor

Plant: **The Dalles** Unit: **F1**
Manufacturer: Year Manufactured:
Year Rehabilitated:

Tier 1 Governor Condition Assessment (For Instructions on indicator scoring, please refer to the condition assessment guide)				
No. Condition Indicator		Score	x Weighting Factor	= Total Score
1	Type of Governor Control System	2	0.25	0.5
	In-Service Year Age: 4 years			
2	Operation & Maintenance History	3	1.17	3.51
3	Availability of Spare Parts	1	0.83	0.83
4	Performance	2	1.75	3.5
Governor Condition Index				8.3
				Good

Data Quality Indicator	10
------------------------	-----------

Tier 2 Governor Condition Assessment (For instructions on how to adjust the Tier 1 Condition Index (CI) by conducting Tier 2 tests or inspections, please refer to the condition assessment guide)	
Total Tier 2 Adjustment:	Choose numerical value: <input type="text"/> <input checked="" type="checkbox"/>
In this comment box, please list which of the Tier 2 tests or inspections you conducted and note the incremental adjustment for each that was used in calculating the total adjustment reported above:	

Certification Information

Last Assessment Date: **1/25/2017**

Evaluated By: **Caracciolo, Lou on 1/25/2017**

Approved By: **N/A**

Comment on Update: FY16, HMI touchscreen computer is obsolete, we are precluded from buying replacements by HDC,ACCS. 2013 Assessment: Digital governor installation completed Jan. 2013. 2011 Assessment: New digital governors scheduled for installation starting in 2012.

The following 4 pages show the HydroAmp condition assessment for the Fish Water turbine and governor. As shown in the report the turbine runners are both 60 years old and in marginal condition. The governors are new and are in good condition.

Tier 1 Condition Assessment

Governor

Plant: **The Dalles** Unit: F2
 Manufacturer:
 Year Manufactured:
 Year Rehabilitated:

Tier 1 Governor Condition Assessment (For Instructions on indicator scoring, please refer to the condition assessment guide)				
No. Condition Indicator		Score	x Weighting Factor	= Total Score
1	Type of Governor Control System	2	0.25	0.5
	In-Service Year Age: 3 years			
2	Operation & Maintenance History	3	1.17	3.51
3	Availability of Spare Parts	1	0.83	0.83
4	Performance	2	1.75	3.5
Governor Condition Index				8.3
				Good

Data Quality Indicator	10
------------------------	-----------

Tier 2 Governor Condition Assessment (For instructions on how to adjust the Tier 1 Condition Index (CI) by conducting Tier 2 tests or inspections, please refer to the condition assessment guide)		
Total Tier 2 Adjustment:	Choose numerical value:	<input type="button" value="▼"/>
In this comment box, please list which of the Tier 2 tests or inspections you conducted and note the incremental adjustment for each that was used in calculating the total adjustment reported above:		

Certification Information

Last Assessment Date: **1/25/2017**

Evaluated By: **Caracciolo, Lou on 1/25/2017**

Approved By: **N/A**

Comment on Update: FY16, HMI touchscreen computer is obsolete, we are precluded from buying replacements by HDC,ACCS. FY14, 3rd Quarter Assessment: digital governor installed in Feb. 2014. 2013 Assessment: Scheduled for digital governor installation Jan. 2014. 2011 Assessment: New digital governors scheduled for installation starting in 2012. 2009 Assessment: Some tuning performed in '08.

HYDROAMP GENERATOR CONDITION ASSESSMENT

The following 6 pages show the HydroAmp condition assessment for the Fish Water generator stator, Winding and Exciter. As shown in the report the conditions of the Generator components are fair to good.

The following tables give a summary of the HydroAMP Generator Stator and Rotor Condition Assessment for The Dalles Fish Water Units 1 and 2.

Tier 1 Condition Assessment

Generator Stator

Plant:	The Dalles	Unit:	F1
Manufacturer:		Voltage Rating:	(kV)
Winding Manufacturer:		Rated Capacity:	(MVA)
Winding Type:		Power Factor:	
Stator Insulation Type:			

Tier 1 Generator Stator Condition Assessment <i>(For Instructions on indicator scoring, please refer to the condition assessment guide)</i>			
No. Condition Indicator	Score	x Weighting Factor	Total Score
1 Operation & Maintenance History	3	0.69	2.07
2 Physical Inspection	2	0.47	0.94
3 Insulation Resistance and Polarization Index	3	0.47	1.41
4 Generator Winding In-Service Year (or Age: 16 years)	2	1.7	3.4
Stator Condition Index			7.8
			Fair
Data Quality Indicator		10	

Tier 2 Stator Condition Assessment <i>(For instructions on how to adjust the Tier 1 Condition Index (CI) by conducting Tier 2 tests or inspections, please refer to the condition assessment guide)</i>	
Total Tier 2 Adjustment:	<input type="button" value="▼"/>
In this comment box, please list which of the Tier 2 tests or inspections you conducted and note the incremental adjustment for each that was used in calculating the total adjustment reported above:	<input type="button" value="▼"/>

Certification Information

Last Assessment Date: 5/22/2014

Evaluated By: Caracciolo, Lou on 5/22/2014

Approved By: N/A

Comment on Update: 2013 Assessment: In Feb. 2012, partial discharges of average quantity and severity being measured on all three phases. 2011 Assessment: Partial discharges of moderate quantity and moderate severity are being measured on the A-phase winding.

Tier 1 Condition Assessment

Generator Stator

Plant:	The Dalles	Unit:	F2
Manufacturer:		Voltage Rating:	(kV)
Winding Manufacturer:		Rated Capacity:	(MVA)
Winding Type:		Power Factor:	
Stator Insulation Type:			

Tier 1 Generator Stator Condition Assessment (For Instructions on Indicator scoring, please refer to the condition assessment guide)			
No. Condition Indicator	Score	Weighting Factor	Total Score
1 Operation & Maintenance History	3	0.69	2.07
2 Physical Inspection	2	0.47	0.94
3 Insulation Resistance and Polarization Index	3	0.47	1.41
4 Generator Winding In-Service Year (or Age: 20 years)	1	1.7	1.7
Stator Condition Index			6.1
			Fair

Data Quality Indicator	10
------------------------	-----------

Tier 2 Stator Condition Assessment (For instructions on how to adjust the Tier 1 Condition Index (CI) by conducting Tier 2 tests or inspections, please refer to the condition assessment guide)	
Total Tier 2 Adjustment:	<input type="button" value="▼"/>
In this comment box, please list which of the Tier 2 tests or inspections you conducted and note the incremental adjustment for each that was used in calculating the total adjustment reported above:	

Certification Information

Last Assessment Date: **1/25/2017**
 Evaluated By: **Caracciolo, Lou** on **1/25/2017**
 Approved By: **N/A**

Comment on Update: FY16-3Q: PD remains significant but stable. FY15 - 2nd Quarter Assessment: PD analysis in March 2014 again produced some discharges having a magnitude that is considered high (greater than 90% of similar 13.8kV hydrogenerators); a limited visual inspection (using inspection ports) in Jan. 2015 found all of the winding insulation to be clean - there was no white powder noted or any other obvious deficiencies. 2013 Assessment: In Feb. 2012 and Apr. 2013, partial discharges of average to moderate quantity and severity being detected on all three phases; data sent to Iris Engineering for comments. 2011 Assessment: Partial discharges of

Tier 1 Condition Assessment

Generator Rotor

Plant:	The Dalles	Unit:	F1
Manufacturer:		Current Rating:	(A)
Winding Manufacturer:		Voltage Rating:	(V)
Field Insulation Type:		Number of Poles:	

Tier 1 Generator Rotor System Condition Assessment (For Instructions on Indicator scoring, please refer to the condition assessment guide)				
No. Condition Indicator	Score	Weighting Factor	=	Total Score
1 Operation & Maintenance History	3	0.95	2.85	
2 Physical Inspection	3	0.95	2.85	
3 Insulation Resistance and Polarization Index	3	0.65	1.95	
4 Generator Rotor In-Service Year Age: 60 years	0	0.78	0	
Rotor Condition Index				7.6
				Fair
Data Quality Indicator				10

Tier 2 Rotor Condition Assessment (For Instructions on how to adjust the Tier 1 Condition Index (CI) by conducting Tier 2 tests or inspections, please refer to the condition assessment guide)	
Total Tier 2 Adjustment:	<input type="button" value="▼"/>
In this comment box, please list which of the Tier 2 tests or inspections you conducted and note the incremental adjustment for each that was used in calculating the total adjustment reported above:	

Certification Information

Last Assessment Date: 1/25/2017
 Evaluated By: Caracciolo, Lou on 1/25/2017
 Approved By: N/A
 Comment on Update:

Tier 1 Condition Assessment

Generator Rotor

Plant:	The Dalles	Unit:	F2
Manufacturer:		Current Rating:	(A)
Winding Manufacturer:		Voltage Rating:	(V)
Field Insulation Type:		Number of Poles:	

Tier 1 Generator Rotor System Condition Assessment (For Instructions on Indicator scoring, please refer to the condition assessment guide)				
No. Condition Indicator	Score	x Weighting Factor	=	Total Score
1 Operation & Maintenance History	3	0.95	2.85	
2 Physical Inspection	3	0.95	2.85	
3 Insulation Resistance and Polarization Index	3	0.65	1.95	
4 Generator Rotor In-Service Year Age: 60 years	0	0.78	0	
Rotor Condition Index				7.6
				Fair

Data Quality Indicator	10
------------------------	----

Tier 2 Rotor Condition Assessment (For instructions on how to adjust the Tier 1 Condition Index (CI) by conducting Tier 2 tests or inspections, please refer to the condition assessment guide)	
Total Tier 2 Adjustment:	▼
In this comment box, please list which of the Tier 2 tests or inspections you conducted and note the incremental adjustment for each that was used in calculating the total adjustment reported above:	

Certification Information

Last Assessment Date: 1/25/2017
 Evaluated By: Caracciolo, Lou on 1/25/2017
 Approved By: N/A
 Comment on Update:

Tier 1 Condition Assessment

Excitation System

Plant:	The Dalles	Unit:	F1
Manufacturer:		Type:	
Current Rating:	(A)	Voltage Rating:	(V)

Tier 1 Excitation System Condition Assessment (For Instructions on indicator scoring, please refer to the condition assessment guide)				
No. Condition Indicator	Score	x Weighting Factor	= Total Score	
1 In-Service Year	Age: 16 years	3	0.93	2.79
2 Operation & Maintenance History		3	0.71	2.13
3 Availability of Spare Parts		1	0.46	0.46
4 Power Circuitry Tests		3	0.46	1.38
5 Control Circuitry Tests		3	0.46	1.38
Excitation System Condition Index				8.1
				Good
				10

Tier 2 Excitation Condition Assessment (For Instructions on how to adjust the Tier 1 Condition Index (CI) by conducting Tier 2 tests or inspections, please refer to the condition assessment guide)	
Total Tier 2 Adjustment:	Choose numerical value: <input style="width: 20px;" type="text"/>
In this comment box, please list which of the Tier 2 tests or inspections you conducted and note the incremental adjustment for each that was used in calculating the total adjustment reported above:	

Certification Information

Last Assessment Date: 2/16/2017
 Evaluated By: Caracciolo, Lou on 2/16/2017
 Approved By: N/A

Comment on Update: FY17/2Q: ABB informs us that the DCS501 and DCS501B bridge has been discontinued. 2009 Assessment: Turning off 125VDC control power for extended periods during maintenance results in loss of stored parameters on circuit cards; requires reprogramming.

Tier 1 Condition Assessment

Excitation System

Plant:	The Dalles	Unit:	F2
Manufacturer:		Type:	
Current Rating:	(A)	Voltage Rating:	(V)

Tier 1 Excitation System Condition Assessment (For Instructions on indicator scoring, please refer to the condition assessment guide)				
No. Condition Indicator	Score	x Weighting Factor	= Total Score	
1 In-Service Year Age: 16 years	3	0.93	2.79	
2 Operation & Maintenance History	3	0.71	2.13	
3 Availability of Spare Parts	1	0.46	0.46	
4 Power Circuitry Tests	3	0.46	1.38	
5 Control Circuitry Tests	3	0.46	1.38	
Excitation System Condition Index				8.1
				Good
				10

Tier 2 Excitation Condition Assessment (For instructions on how to adjust the Tier 1 Condition Index (CI) by conducting Tier 2 tests or inspections, please refer to the condition assessment guide)	
Total Tier 2 Adjustment:	Choose numerical value: <input style="width: 20px;" type="text"/>
In this comment box, please list which of the Tier 2 tests or inspections you conducted and note the incremental adjustment for each that was used in calculating the total adjustment reported above:	

Certification Information

Last Assessment Date: 2/16/2017
 Evaluated By: Caracciolo, Lou on 2/16/2017
 Approved By: N/A

Comment on Update: FY17/2Q: ABB informs us that the DCS501 and DCS501B bridge has been discontinued. 2009 Assessment: Turning off 125VDC control power for extended periods during maintenance results in loss of stored parameters on circuit cards; requires reprogramming.

Appendix E

Miscellaneous Mechanical Systems

The Dalles Fish Units Runner Replacement

Pertinent Mechanical Systems

1. Machine Condition Monitoring

1.1. General

Machine condition monitoring (MCM) is a critical addition to any new or rehabilitated hydropower generating unit. The Corps has installed machine condition monitoring at multiple projects for various reasons, but all under the premise that plant safety and unit reliability are significantly increased by monitoring unit stability and vibration. Integrated as an interlock required for unit operation, machine condition monitoring provides a level of safety that cannot be achieved otherwise. The associated software allows for trending and improved preventive maintenance.

There are various levels of complexity – data processing, automation, and diagnostics that can be integrated in a machine condition monitoring system. The Corps has a recommended minimum for all hydropower generating units that monitors vibration in critical areas to prevent severe damage. Full scale machine condition monitoring can sense dramatic vibration in multiple areas and record and process data. These systems are more complex than The Corps recommended minimum, but can justifiably be installed. The decision must be made on a per unit basis by considering overall need, historical operation, available funding, and future operational needs.

For The Dalles Fish Units, machine condition monitoring is particularly insightful in providing operational data to ensure that the Fish Units do not experience an unplanned outage and can continuously perform their primary mission - deliver water downstream.

1.2. Option 1: Do nothing

1.2.1. Pros

The “do nothing” option is exactly as it sounds. The pros are limited. The only foreseeable advantages to this are the reduction in costs due to less procurement and construction, and less maintenance.

1.2.2. Cons

The cons associated with the “do nothing” option directly counter the brief detail of advantages outlined in the “General” section above. Personnel safety and unit reliability are jeopardized tenfold without proper vibration monitoring. Data analysis cannot be performed so there cannot be trending to support preventive maintenance and intervene prior to a potential catastrophe. The primary mission of the Fish Units, to deliver water downstream, is considerably endangered.

1.3. Option 2: Full Scale MCM

1.3.1. Pros

Full scale machine condition monitoring has many benefits. As discussed above, monitoring of vibration levels allows for intervention prior to a potential catastrophic event. Personnel safety and unit reliability can be kept to maximum levels. Data is collected and stored for access. Historical data is useful in characterizing a generating unit’s vibration levels and enacting proper maintenance. Additionally, in the event of a unit experiencing significant vibration, plant Operations can plan accordingly to minimize downtime and reduced downstream flow.

Full scale MCM in Corps hydropower generating units typically consists of proximity sensors located near bearings, air-gap measurement of stator and rotor, and all associated processing units, hardware, software, and controllers. The instrumentation is typically readily available. The system, as a whole, can be installed by plant personnel which increases familiarity and overall sense of awareness of the operational characteristics of the generating units.

1.3.2. Cons

The cons of full scale MCM are marginally impactful relative to the Pros, or the cons of a lesser option. The costs associated with full scale MCM range from 100 – 600% higher than lesser options, depending on the complexity of instrumentation and automation. It is important to note that these costs will be significantly reduced because the installation will occur while the unit is disassembled for rehabilitation. Construction is increased. Engineering and technical effort is increased as well. However, the Corps has historical guidance on MCM design and has established relationships with various MCM equipment suppliers. Additionally, maintenance will be increased for project personnel. The level of maintenance can be minimized, however, with the addition of more expensive addressable instrumentation. The overall level of effort is increased, concurrent with cost – and these are the foremost disadvantages of a full-scale MCM.

1.4. Option 3: Critical Vibration Monitoring (CVM)

1.4.1. Pros

Critical Vibration Monitoring (CVM) has been coined as the term to describe the “recommended minimum” vibration monitoring system for Corps hydropower generating units. See the HDC report entitled *Hydro Turbine-Generator Machine Condition Monitoring Guidelines* from June 6, 2014 for a more in-depth study of why and how CVM should be implemented.

The essence of CVM is a scaled down version of full scale MCM that incorporates proximity probes at the turbine guide bearings to detect sizable vibration changes. An alarm high point triggers an annunciation and can force a unit trip automatically. CVM protects the generating unit from severe damage. Similarly to full scale MCM, CVM can prevent a catastrophic event. But rather than promoting preventive maintenance via data trending, CVM simply shuts the unit down before the potential failure occurs. Also, for this reason, CVM enhances the level of safety and protection for plant personnel. In comparison to full scale MCM, costs, construction, and maintenance are significantly reduced, as well is overall effort in part of the design engineers and plant personnel.

1.4.2. Cons

The cons of CVM are a reduced level of protection for the generating unit. The lack of data storage and processing makes data trending much more difficult, and sometimes not possible – depending on the complexity of the data acquisition device. Contrary to full scale MCM, CVM may allow for minor damage to occur to the unit. An example is thrust bearing or upper guide bearing damage due to some misalignment or unbalance in the upper portions of the turbine-generator. However, vibration limits can be more stringent to force a trip over a larger range of vibration levels. CVM employs less monitoring, therefore it may be difficult to diagnose a potential issue.

1.5. Developing Alternative (Potential Option 4)

The USACE is currently investigating a “middle-of-the-road” alternative in which there could be more monitoring locations and a higher level of data acquisition and processing than what is typical for CVM.

This option would not quite meet the criteria that is typical for full scale MCM, however. As the Corps makes determinations regarding this option, it may be pursued further for The Dalles Fish Units.

1.6. Costs:

The costs below were compiled from historical and manufacturer data. The ranges encompass various levels of complexity. For full scale MCM and CVM, these can be described as the following:

- Full Scale MCM: amount of automation, limits of data storage, and levels of data processing – these factors significantly affect cost
- CVM: options for supplementary sensors, levels of data processing – these factors significantly affect cost

Estimated Itemized ROM Costs Per Unit					
	One-time costs				Annual costs
	Materials	*Installation	Engineering	Contracting	Software Updates
Option 1: Do nothing	\$0	\$0	\$0	\$0	\$0
Option 2: Full Scale MCM	\$58,000 - \$102,000	\$40,000 - \$70,000	\$8,000 - \$20,000		\$4,000 - \$8,000
Option 3: CVM	\$4,000 - \$10,000	\$10,000 - \$15,000	\$2,500 - \$6,000		\$2,000 - \$4,000
Option 4: (Hypothetical)	\$30,000 - \$40,000	\$30,000 - \$40,000	\$3,000 - \$8,000		*\$20,000 - \$40,000

* Installation costs are for in-house installation, performed by project personnel

** Option 4 costs are hypothetical

*** Software updates for option 4 include annual maintenance and data reports

*Estimated Total ROM Costs Per Unit	
Option 1: Do nothing	\$0.00
Option 2: Full Scale MCM	\$110,000 - \$200,000
Option 3: CVM	18,500 - \$35,000
**Option 4: (Hypothetical)	\$83,000 - \$128,000

* Total ROM includes one-time costs and first year of annual recurring costs.

1.7. Recommended Option

The recommended option is Option 2, Full Scale MCM. This option is recommended for all Fish Unit turbine-generator rehabilitation alternatives. The Fish Units possess a certain importance that has far-reaching effects on citizens of the Northwest and assures the livelihood of salmon as they migrate through Corps dams. The consequence of an unplanned outage or catastrophic failure cannot be easily accommodated and for that reason, Option 2 meets the requirements of this Turbine-Generator Rehabilitation.

The costs of Option 2 are higher than the other options. However, the level of complexity and costs should be on the lower range. The system is a standard Corps recommendation with six proximity probes - three near the turbine guide bearing and three near the thrust/upper guide bearing, nine air-gap monitoring devices – 8 near top of stator frame and one near the bottom of the stator frame. The

software will consist of data acquisition and simple processing. This system has an independent (local) server upon which data is stored and analyzed. The option to network Fish Units 1 and 2 together is feasible, but will potentially introduce more costs. This feature will be evaluated prior to Phase 1 work. Alarms and trips will be set with standard Corps identified limits as they are described in *Hydro Turbine-Generator Machine Condition Monitoring Guidelines*. Additional features will be pursued and evaluated in Phase 1. Full scale MCM may be employed on The Dalles Main Units, as these systems exists at Bonneville and McNary and will soon be installed at John Day and Ice harbor. Having similar systems on the Fish Units will allow for interconnectivity and networking, should the designers choose to implement those features.

2. Thrust Bearing and Generator Guide Bearing Oil Coolers

2.1. Thrust/Upper Guide Bearing Oil Coolers

The thrust bearing and upper guide bearing share cooled lube oil. Both bearings are contained within an oil tub. Also, within the oil tub is a copper, finned, coiled tube oil cooler. The oil is circulated within the oil tub by the rotary motion of the generator shaft. Cool river water is pumped through the oil cooler and removes the heat absorbed by the lube oil.

As described in the “Existing Conditions,” portion of this report, these oil coolers, termed *Internal Bearing Oil Coolers*, have reached the end of their useful service life. Maintenance and repairs are more frequent than acceptable. Accessing the coolers is difficult – requiring a partial unit unstack. Replacement coolers are completely justified for these reasons. Additionally, it is standard procedure to replace and modernize these coolers during a unit rehabilitation. For the replacement, two options will be evaluated – internal bearing coolers and external bearing coolers. The following sections will discuss the pros and cons of each, and provide a recommended option that the PDT will pursue as the job progresses into Phase 1. It is important to note that HDC performed an in-depth study of replacement thrust bearing oil coolers for all of The Dalles hydropower generating units. Many of the points discussed in this text are drawn from the Phase 1A Report for *The Dalles Powerhouse Thrust Bearing Oil Cooler Replacement*.

2.2. Lower Guide Bearing Oil Coolers

The lower guide bearing lube oil is cooled by a finned tube cooler that is immersed in oil in the lower guide bearing oil tub – also considered an *Internal Bearing Oil Cooler*. Cool river water flows through the tube and draws the heat out of the oil and is discharged back into the river. The rotating shaft journal creates a mixing action that assists in distributing cool oil amongst the bearing pads.

Similarly to the thrust and upper guide bearing cooler, the aging lower guide bearing cooler should be replaced. Maintenance is more frequent than what is acceptable. Repairs require significant down time and are unreasonably difficult. In a turbine-generator rehabilitation, the Corps’ standard procedure is to replace these coolers. This ensures a renewed reliability for years of continuous use. For the replacement, the Corps is examining two options – internal bearing coolers and external bearing coolers. The following text will describe the pros and cons of each option as they apply to The Dalles Fish Units.

2.3. Option 1: Internal coolers (replace in-kind)

2.3.1. Pros

Replacement of the existing internal coolers with new internal coolers is a practical “replacement in-kind.” The design of the coolers will not change. All of the efforts associated with engineering, procurement, and installation will be at a minimum. Internal coolers are proven to be simple, reliable,

and functional. Maintenance is relatively infrequent when considering the years identified to be within the “useful service life” of the cooler, typically 15-20 years. Shop drawings of the existing coolers are available. Overall, replacement of the existing internal coolers with new internal coolers is the most simple and cost effective option to provide the necessary cooling to the bearing lube oil.

2.3.2. Cons

A “replacement in-kind” introduces the potential for failure with consequences that are unacceptable under the current operational requirements of the Fish Units. The coolers can essentially fail in only one fashion, and that is a leak. The consequences of a leak can be significant. If oil enters the cooler, it could eventually wind up in the Columbia River. A more likely scenario is that the cooling water enters the oil tub and damages the bearings. Either scenario will necessitate a repair of the cooler. Maintenance and repair is a substantial effort. The generator has to be partially unstacked. Outage times are too excessive to ensure that the required downstream flow conditions are met. If both Fish Units happen to have cooler failures, the downstream fish channels cannot adequately coerce migrating salmon through the fish ladders. A replacement in-kind has the immediate benefit of ease and low cost. But the consequences of an eventual failure make this option undesirable.

2.4. Option 2: External coolers

2.4.1. Pros

External bearing oil coolers are becoming more common for Corps hydropower generating units. They nearly eliminate the potential for oil discharge into the river. Leaks are more easily detected and have practically zero impact on operation of the unit. Routine maintenance is not complex and the components of an external bearing cooler can be readily stocked as spares. Additionally, the coolers can be designed with redundancy such that maintenance and repairs do not cause an outage. External bearing coolers are installed on other Main Stem Columbia River Plants – Bonneville 1 and McNary. For The Dalles Fish Units, external bearing coolers provide a relief from the inevitable failure and outage that accompany an internal bearing cooler.

2.4.2. Cons

External bearing coolers present an initial higher investment in both dollars and effort. Engineering is significantly increased with the need for in-depth scoping and studying to discern the best locations and configurations of an external cooling system. The procurement of materials is not significant, but compared to an internal cooler, more involved. Construction and commissioning activities are considerable and it can be difficult to modify the system once commissioning starts. Construction efforts will involve modifications of the water and oil supply/return systems that are existing. Phase 1 work, Plans and Specifications, must be extremely thorough to ensure the contractor provides the system that the unit needs. Routine maintenance is increased, as plant personnel will need to perform daily checks to ensure continued operation. Overall, the increased initial investment of time and money is the primary disadvantage.

2.5. Costs

The Phase 1A Report for *The Dalles Powerhouse Thrust bearing Oil Cooler Replacement* contains detailed cost information. For the purpose of the ROM cost evaluation, the numbers presented in that report are used. The report was finalized in September of 2015. The numbers in the table are representative of material procurement, installation, engineering, and contracting. Inflation of 3% has been added to account for 2016 and 2017.

Estimated Total ROM Costs Per Unit			
	Thrust/Upper Guide Bearing	Lower Guide Bearing	TOTAL
Option 1: Internal Bearing Coolers	\$64,059.49	\$64,059.49	\$128,118.98
Option 2: External Bearing Coolers	\$209,084.09	\$209,084.09	\$418,168.18

2.6. Recommended Option

The recommended option is Option 2, External Bearing Cooler. The basis of this decision is the absolute necessity for un-interrupted operation of the Fish Units. In fact, the 2015 Phase 1A report states that “the Biological Opinion for The Dalles dictates that the Fish Units run at all times...” External bearing coolers designed with redundant components are the most practical and applicable additions to ensure that the primary mission of the Fish Units is accomplished day in and day out.

3. Surface Air Coolers

3.1. General

The surface air coolers perform the heat removal within the generator shroud and are a critical piece of equipment for ensuring continued operation of the Fish Units. It is standard Corps practice to replace and modernize these air coolers during a unit rehabilitation. Additionally, the “Existing Conditions” section of this report reveals that the existing coolers have a history of maintenance issues. There are no alternatives to evaluate regarding the surface air coolers. The air coolers will be sized to accommodate the required cooling capacity within the generator shroud.

3.2. Costs

The costs associated with replacement air coolers include all of the material procurement, installation, engineering, and contracting. In addition to replacing the coolers, there will likely be pipe replacement and minor modifications to retrofit new coolers. The expected Rough Order of Magnitude (ROM) costs per unit for new surface air coolers is \$80,00.00.

4. Emergency Closure

4.1. General

Emergency closure will not be pursued in this job. The magnitude of engineering and construction justifies that it is a stand-alone contract for the future. However, it is important to discuss during this turbine-generator rehabilitation because the influence that new systems may have on a new emergency closure system. The Fish Units do not have a final line of defense to stop the flow of water into the scroll case. The wicket gate servomotor cylinders are outfitted with a nitrogen booster system to quickly close the wickets gates to stop the flow of water past the turbine. But a catastrophic head cover failure cannot be avoided.

The alternatives for emergency closure are developing every day. New, environmentally “acceptable” oils can be used in place of typical petroleum based hydraulic fluid such that dedicated cylinders and affixed emergency head gates can achieve the emergency closing. Other Corps plants have dedicated gantry cranes with hoisting capable of lowering the emergency gates (e-gates) in under 10 minutes – the Corps standard. Fixed hoisting machinery for both Fish Units could also be pursued, but they introduce a footprint that may not be available at the plant and they may not meet the performance requirements for an emergency closure system.

The likely alternative will be new dedicated cylinders that are mounted above the gate slots and lower the e-gates immediately and automatically. These gates will utilize a fluid that the Corps has vetted and deemed acceptable. This alternative [and others] will be investigated in the future.

Appendix F

Shaft Stress Analysis

GIVEN:

1. Shaft dimensions for turbines and generators.
2. Weights of shafts and rotating Components.
3. Hydraulic thrust of the turbine.
4. Material is ASTM 235-52T, class E which has Yield=37.5 ksi and Tensile=75 ksi.

Calculations were performed using the pertinent dimensions of the shaft and component weights to determine the maximum torsional load and therefore the generator output that the shaft can deliver. The turbine shaft would be able to deliver 20.4 MVA at a generator efficiency of 98% and a maximum shear stress of 6,000psi. The generator shaft would be able to deliver 17.92 MVA at a generator efficiency of 98% and a maximum shear stress of 6,000psi. The generator shaft is one inch smaller than the turbine shaft and is therefore the limiting factor on the shaft loading capability.

The maximum output the rotating components can deliver therefore is 17.92 MVA.

$$\tau_{\text{allowable}} = \left[(\tau_{\text{max}})^2 - \left(\frac{\sigma_{\text{axial}}}{2} \right)^2 \right]^{0.5}$$

$$T = \frac{\tau_{\text{allowable}} J}{c}$$

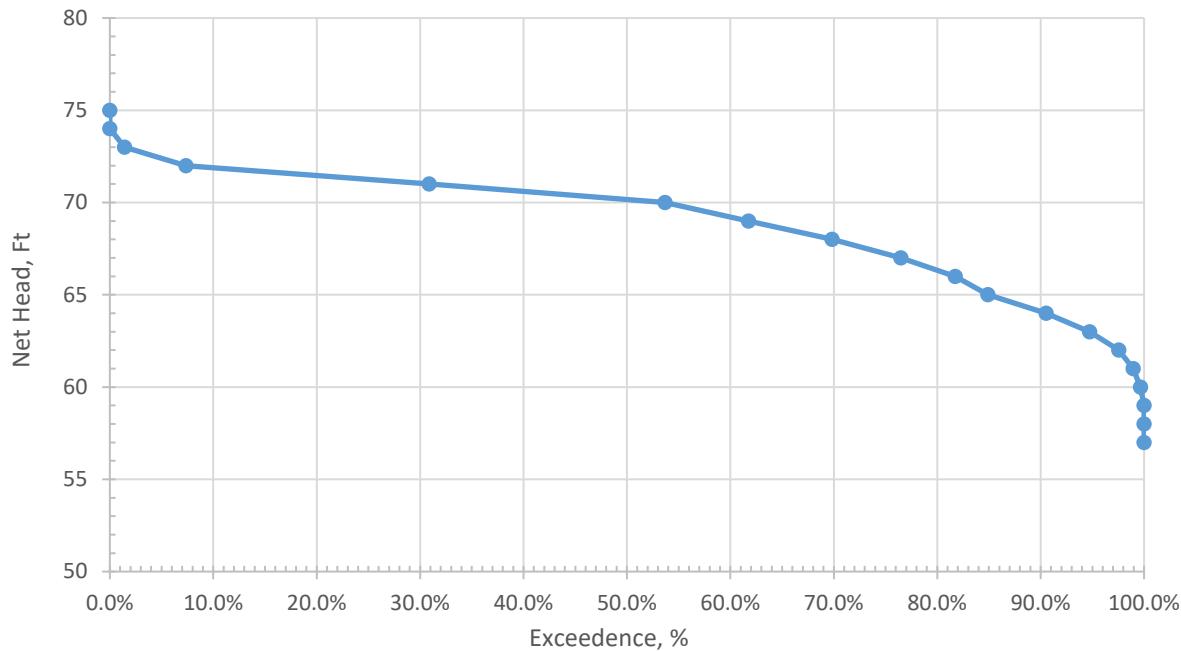
$$J = \frac{\pi}{32} \frac{OD^4 - ID^4}{OD}$$

$$c = \frac{2}{2}$$

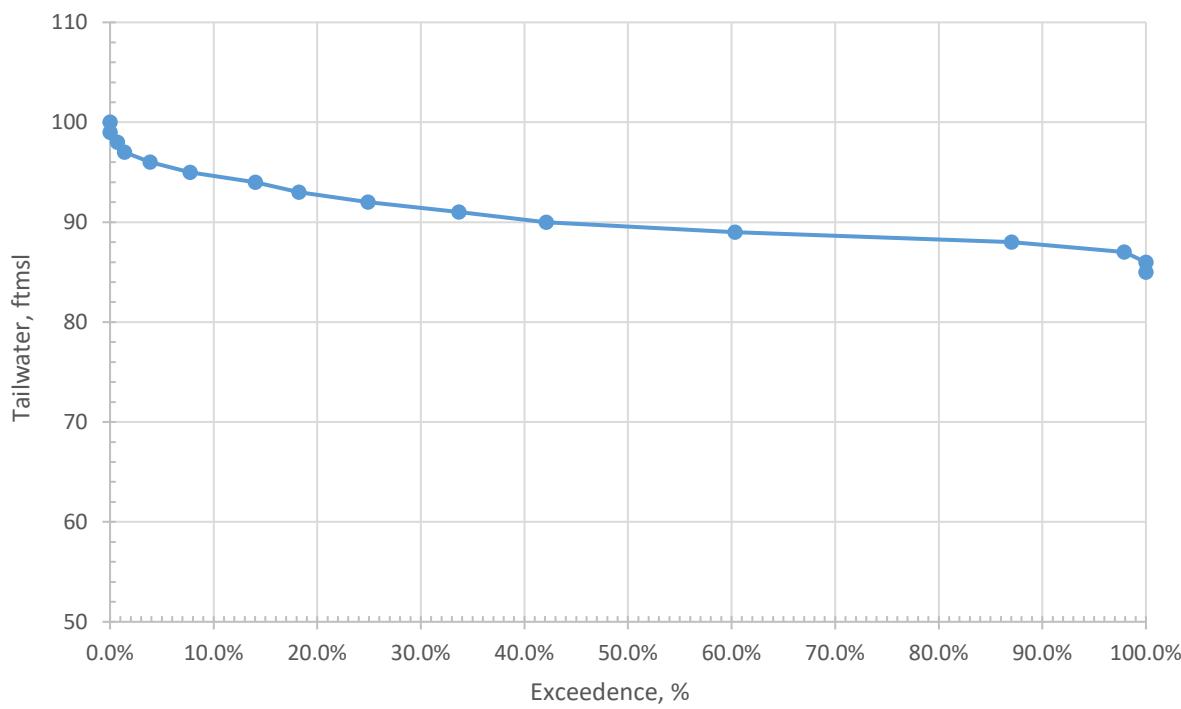
$$hp = \frac{n T_{\text{max}}}{63,025}$$

The Dalles Fish Water Turbines, Generator Shaft

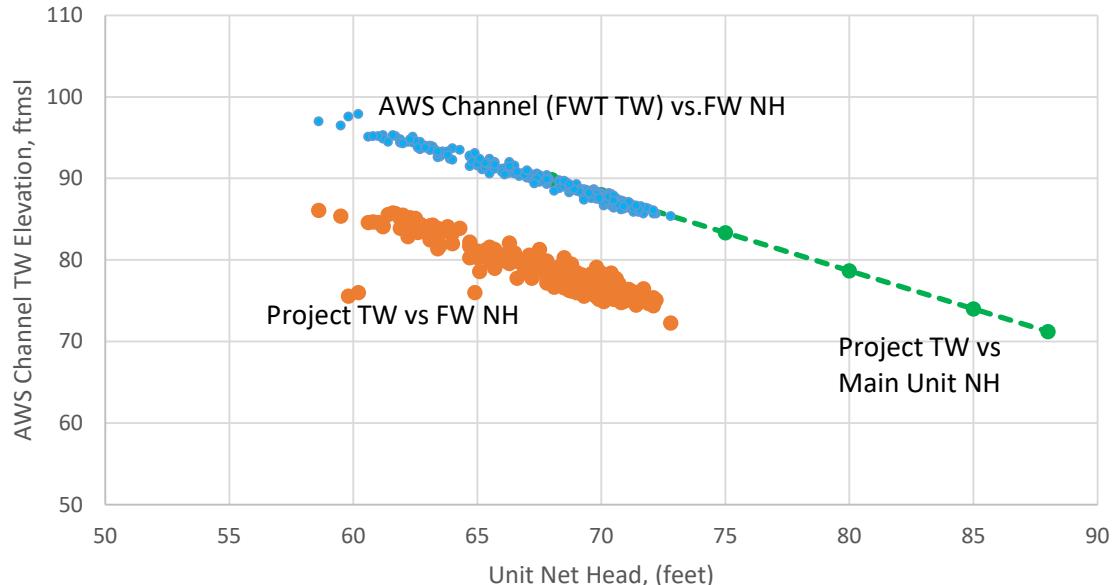
Generator Shaft:	19 7.375	inch, Outside Diameter (OD) inch, Inside Diameter (ID)
Generator Shaft Area:	240.81	in ²
Turbine Rotating Elements	51,600	lb. Turbine Drawings and calcs
Rotor & Generator Shaft	171,750	lb. Turbine Drawings and calcs
Total rotating weight below thrust bearing	223,350	lb.
Hydraulic Thrust	376,000	Estimate
Total Suspended Weight:	599,350	lb.
Stress in Turbine Shaft (σ_T):	2488.89	psi
τ_{max} :	6,000	psi
$\tau_{allowable}$:	5,870	psi
J:	12,504	in ⁴
c:	9.5	in
T_{max} :	7,725,411	lb in
Shaft Speed	200	rpm
Turbine Output:	24,515	hp
Generator Output @ 98.0% eff:	17.92	MW

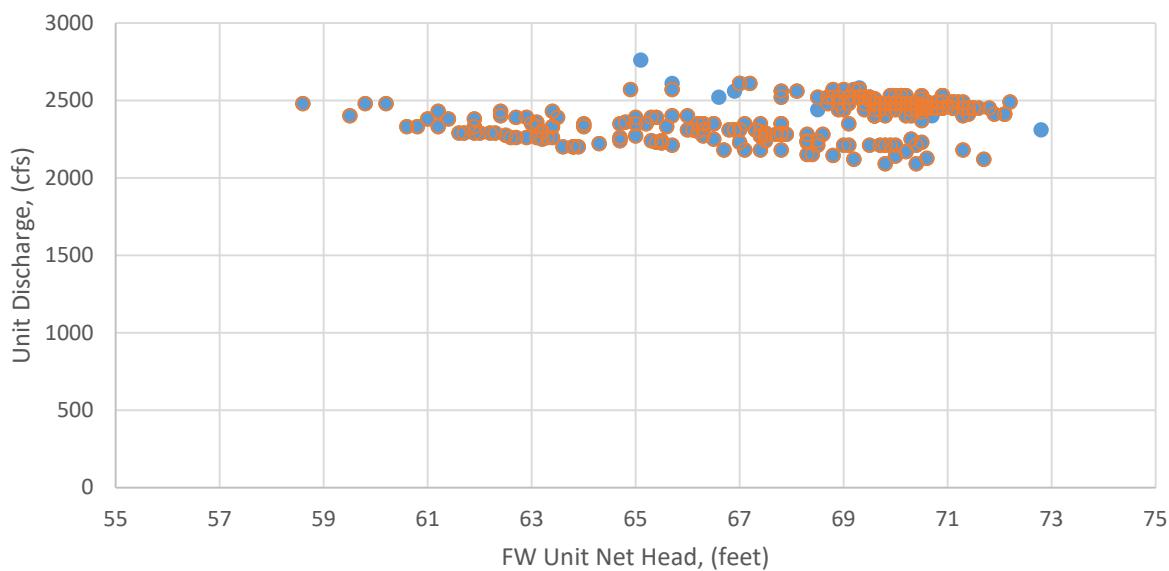

The Dalles Fish Water Turbines, Turbine Shaft.

	20	inch, Outside Diameter (OD)
	9.75	inch, Inside Diameter (ID)
Generator Shaft Area:	239.50	in ²
Turbine Rotating Elements	51,600	lb. Turbine Drawings and calcs
Rotor & Generator Shaft	171,750	lb. Turbine Drawings and calcs
Total rotating weight below thrust bearing	223,350	lb.
Hydraulic Thrust	376,000	Estimate
Total Suspended Weight:	599,350	lb.
Stress in Turbine Shaft (σ_T):	2502.53	psi
τ_{max} :	6,000	psi
$\tau_{allowable}$:	5,868	psi
J:	14,821	in ⁴
C:	10.0	in
T_{max} :	8,696,942	lb in
Shaft Speed	200	rpm
Turbine Output:	27,598	hp
Generator Output @ 98.0% eff	20.17	MW


Appendix G

Fish Water Turbine Project Data


The Dalles Fish Water Turbines, 2011-12
Net Head Exceedance


The Dalles Fish Water Turbines, 2011-12
Tailwater Exceedance

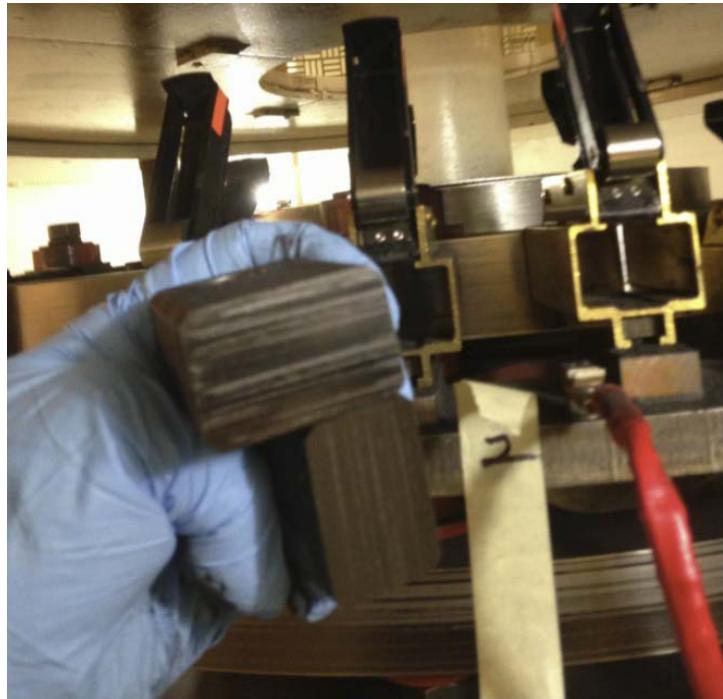
AWS Channel Tailwater Elevation vs. Unit Net Head

Unit 1, Unit Discharge vs. FW NH

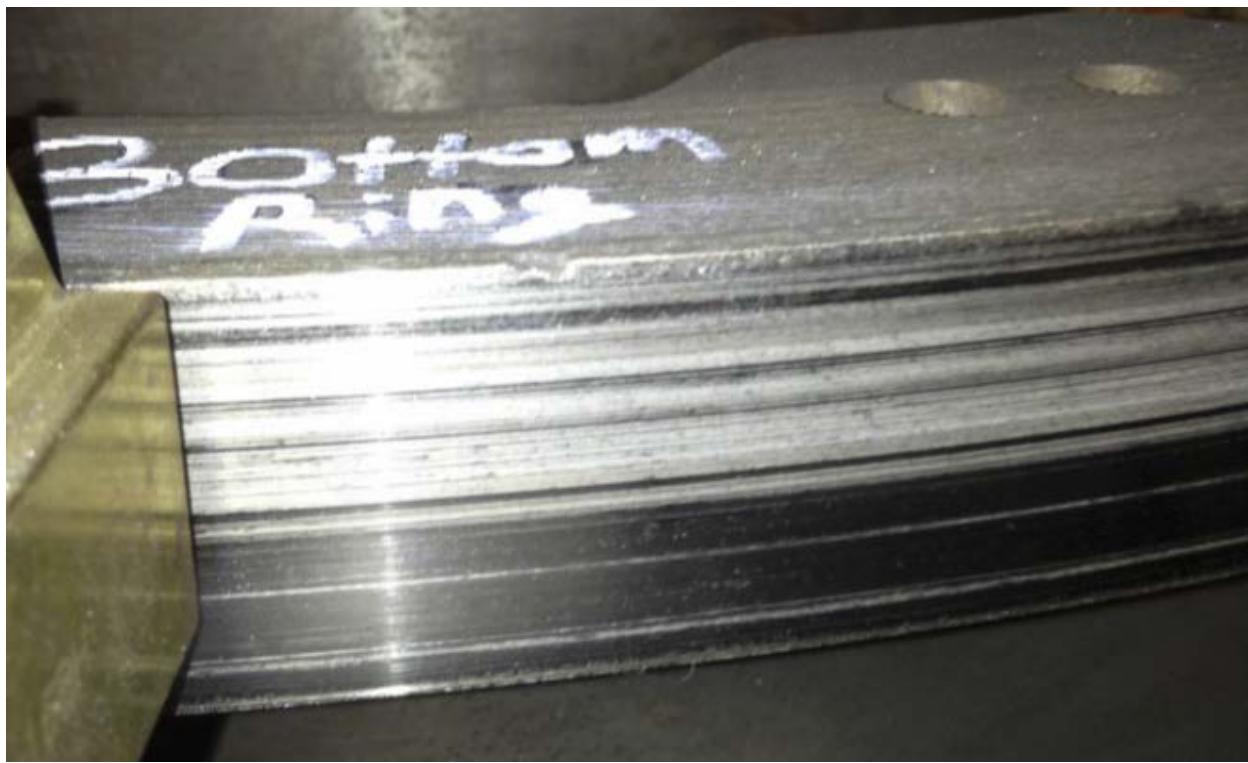
APPENDIX H – EXCITER BRUSHES AND BRUSH HOLDERS

1. FISH UNIT BRUSH WEAR ISSUES

The Fish Water units are operated to deliver continuous flow to the fish ladders. These generators see near continuous operation throughout a year at a loading of 70-75% of full nameplate capacity. The rated field current is 460 Amperes. At the 70-75% nameplate capacity, the unit requires approximately 310 Amperes of field current.


The Dalles Maintenance staff noticed excessive brush wear for The Dalles Fish Units since at least 2011. These problems are heavy threading, medium-to-heavy film, circulating current in brush holders. Staff engaged The Dalles engineering, HDC, and Helwig, the brush manufacturer, in troubleshooting and developing a solution. Wear issues are still unresolved, as excessive wear is considered less than two years of operation. Project has reported that some year, they had to replace the brushes annually.

Brushes require a sufficient current density to cause gasification of the carbon brush material. The thin layer of off-gassing is actually the conductive medium between the brush and the surface of the slip ring. If the brush rides directly on the ring without the gaseous interface, it will experience mechanical wear. Mechanical wear is evident with threading in the brush face, streaking and filming on the ring, and excessive dusting in the housing. The dusting often coats the surface of the holder and insulating standoffs in the brush housing area reducing the dielectric strength.


The gasification layer is very thin – only a few atoms of total thickness. In addition to the need to select the right current density for the operational case, the brushes must be aligned, faced, and seated with an appropriate pressure to maintain pressure against the slip ring as the unit “skates” within its guide bearing clearances.

It is also possible to increase the current density too far. In this case, the brushes will begin to exhibit pitting and possibly arcing damage, overheating, and other wear indicators. The case of The Dalles Fish Units is unique in that the generators run continuously at a partial load. Generally, brushes are selected for the maximum current passage under the assumption that they will spend minimal time at lower output values. With partial loading, it appeared that the brushes were wearing mechanically due to insufficient current density. This was further exacerbated by the continuous operation throughout the year. Without a protective gaseous layer, the mechanical wear was acting on the brushes continuously throughout the year causing them to wear significantly faster.

The recommended current density for ideal wear with the original brushes was 35-40 Amperes per square inch. The recommended current density for ideal wear with the new brushes was 40-60 Amperes per square inch.

Photo 1: Brush threading and uneven wear

Photo 2: Film and streaking

2. MITIGATION OF WORK

The Dalles initially worked with Helwig representatives to correct the issues noted in paragraph 0. The following mitigating work was performed:

- Brush type changed to a harder brush (Type H552 – the same as the main units)
- Corrected distance between brush holder box and slip ring to 1/8" – 3/16", plus runout
- Corrected spring pressure to 5 - 6 lbs, change maintenance schedule to replace every 5 years regardless of pressure
- Change maintenance schedule to change polarity two years

One final recommendation that was not initiated at this time was dropping a brush to increase the current density. At the average loading level, which is held consistent throughout the year, the calculations for current density are shown in Table 1. Dropping a brush would achieve the current density shown in Table 2.

Table 1: Brush calculations with all brushes installed

Condition: All brushes installed	
6	Number of brushes
1.5	Square Inches / Brush
9	Total Square Inches
460	Rated Field Current, Amps
310	Average Field Current, Amps
51.11	Current Density at Rated Field Current Amps / Sq. In.
34.44	Current Density at Average Field Current Amps / Sq. In.

Table 2: Brush calculations with one brush removed

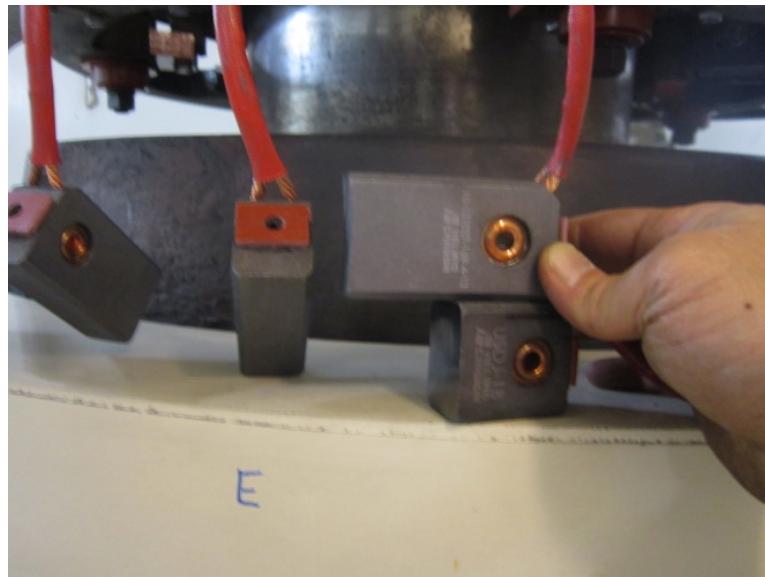
Condition: Remove one brush	
5	Number of brushes
1.5	Square Inches / Brush
7.5	Total Square Inches
460	Rated Field Current, Amps
310	Average Field Current, Amps
61.33	Current Density at Rated Field Current Amps / Sq. In.
41.33	Current Density at Average Field Current Amps / Sq. In.

In January of 2014, both a Helwig representative and HDC traveled to The Dalles to discuss the brush wear issues. Existing actions were reviewed in conjunction with the exhibited wear.

The following actions were recommended and completed by The Dalles Maintenance and engineering:

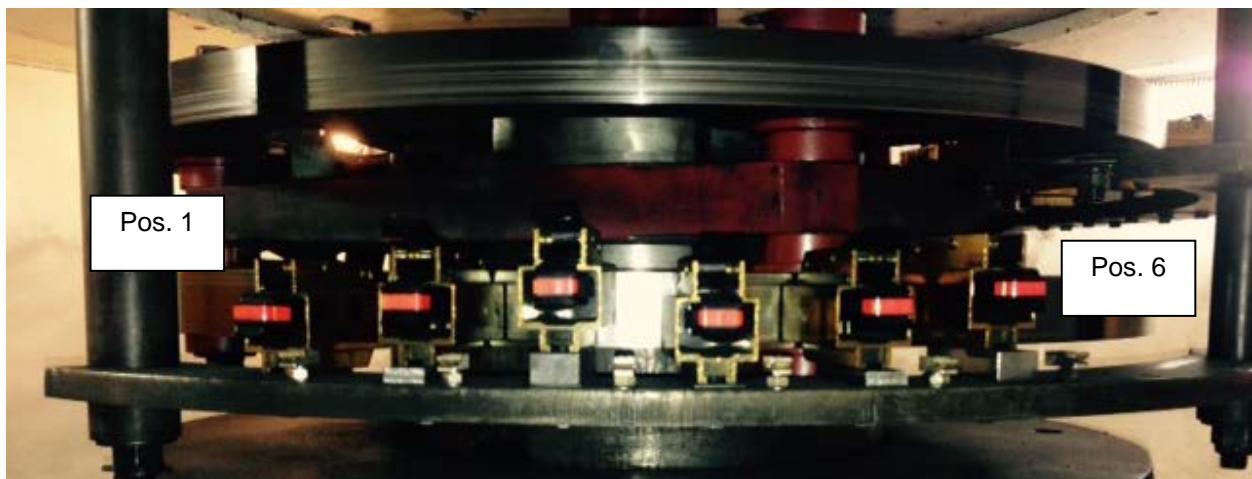
- Clean rings
- Remove one brush – position six was selected
- Perform inspections during the year
- Each slip ring was stoned and polished/sealed with oak
- The bottom bevel on each brush was brought as close to 0 degrees as possible

Removing a second brush was also considered. As shown in Table 3, removing a second brush puts the average operational current density toward the upper end of the acceptable values before wear begins to increase from excessive current. The consensus at the time was to remove one, inspect and determine if the additional brush needed to be removed.


Table 3: Brush calculations with two brushes removed

Condition: Remove two brushes	
4	Number of brushes
1.5	Square Inches / Brush
6	Total Square Inches
460	Rated Field Current, Amps
310	Average Field Current, Amps
76.67	Current Density at Rated Field Current Amps / Sq. In.
51.67	Current Density at Average Field Current Amps / Sq. In.

Additional testing also showed evidence of selective action – where resistance between brush and ring changes causing current to “skip” around the brush set – or current imbalance. The provided values were tabulated in Table 4.


Table 4: 2014 Fish Unit 1 brush current measurements at 14 MW load

Fish Unit 1							
Brush Type	H552						
Current, Amperes at 14 MW load	Position	1	2	3	4	5	6
	Top Ring	57	57	60	62	80	Removed
	Bottom Ring	57	59	66	56	84	Removed

Photo 3: Generator Brushes

Initial discussion focused on removing the second brush as originally proposed. Also considered was switching to a composite grade electrographite brush. During these discussions it was also proposed that the differential brush height with the removed brush position 6 could lead to a poor conductive film deposition for the corresponding height brush – brush 3 – relative to the remaining brushes as shown in photo 3.

Photo 4: Brush height distribution

3. PROJECT MAINTENANCE HISTORY

2012/2013:

1. Changed to a brush of greater density, type HS502.
2. Installed “quick clips” on the brush rigging to except main unit brushes, and increasing surface area of the connector.

3. Machined and polished slip rings to zero run out, these brush boxes and springs don't require any.
4. Changed out damaged brush boxes for new and set between 1/8" - 3/16" plus run out away from slip ring.
5. Made one piece shims to obtain same elevation of brush box on ring as 2-3 shims which are installed now.
6. Checked spring tension it should be between 5-6 Lbs.
7. Changed polarity on our slip rings every other year, odd unit odd year even unit even year.

2013/2014:

1. The slip rings was polished – the project stoned each ring.
2. One brush was removed from each ring.
3. All brushes exhibiting wear was replaced.

In August one brush was found to have excessive wear – 1 3/4 in. past replacement point. Emergency outage taken to replace and clean rings. Slip ring condition improved, but brush selectivity is still present.

2014/2015:

1. Dropped one more brush per ring for a total of 4 brushes per ring and monitored brush current.
2. Rings were polished with untreated canvas.
3. Cleaned units.
4. FU2 had a brush with high current so it was changed back to 5 brushes per ring.

March 2015:

To increase the operational range of the fish units the type HH brush was installed on both units. This brush would allow us to operate at 75 A/in² providing the extra range needed if one of the fish units had an emergency shutdown.

After 28 days of operation, there was excessive wear on one brush 3/8" and 1/4" on a couple other brushes. There was also a significant amount of carbon dust buildup for the 28 day period. The units were brought back down, cleaned and the type HS502 brushes were re-installed on both Fish Units with five brushes per ring.

Since this outage there has been some selectivity with the brushes, but less overall. In June the units were brought back down and the rings were stoned on 6/4/15. Since this date there doesn't appear to be any selectivity issues and the amount of wear appear to be normal, ~1/8th inch.

February 2016:

Changed out brushes on FU1 to Mersen type ED34G. Trying alternate manufacturer due to higher range of operation, 35-77 A/sq. in., as opposed to the Helwig type HS502, 35-60 A/sq. in. Brush boxes and connection to bus bar replaced. Installed 5 brushes per ring.

March/April 2016:

Significant wear noted on one brush on the top ring of FU1 as well as low current on a couple brushes. FU1 had significant dusting in compared with FU2.

June 6, 2016:

Shutdown on FU1 to replace brushes and clean the unit. One brush on top ring had 5/8" wear since February install. Unit cleaned, all brushes replaced on top ring and reduced to 4 brushes per ring. Once returned to service, brush currents look good, within 20% of each other range of 42-64 A/sq.in.

August 3, 2016:

Unit shutdown for ROV inspection. Brushed inspected, 1/2" wear on brushes that were installed in June on top ring. Unit cleaned and no brushes replaced. Note, brush wear on bottom ring was 1/2" since February. This is around the expected normal wear rate projected by Mersen, 1/8" per 1000 operating hours. (161 days since FU1 went into service in February until Aug 1. Not accounting for the outage times, this is 3864 hours)

September 30, 2016:

Significant wear noted on FU1 top ring brush. Brush not expected to last until December outage. Outage being planned for replacement and clean up.

October 11, 2016:

Forced outage of FU1 due to wear on brushes. Cleaned carbon dust and replaced brush.

December 2016 - February 2017:

Removed Mersen brushes on FU1 due to excessive dusting and reduced brush life. Reinstalled Helwig type HS502 brushes, 5 per ring, brush boxes and quick clip connection to bus bar.

Appendix I

Cost Data

**** TOTAL PROJECT COST SUMMARY ****

Printed: 5/9/2018
Page 1 of 11

PROJECT: TDA Fish Unit Rehab_Recommended Alternative
PROJECT NO: 0
LOCATION: The Dalles Dam

DISTRICT: Portland District CENWP
POC: CHIEF, COST ENGINEERING, Eileen Horiuchi

PREPARED: 5/8/2018

This Estimate reflects the scope and schedule in report;

Phase 1A Report

Civil Works Work Breakdown Structure		ESTIMATED COST				PROJECT FIRST COST (Constant Dollar Basis)						TOTAL PROJECT COST (FULLY FUNDED)			
WBS NUMBER A	Civil Works Feature & Sub-Feature Description B	COST (\$K) C	CNTG (\$K) D	CNTG (%) E	TOTAL (\$K) F	ESC (%) G	COST (\$K) H	CNTG (\$K) I	TOTAL (\$K) J	Spent Thru: 1-Oct-17 (\$K) K	TOTAL FIRST COST (\$K) L	INFLATED (%) M	COST (\$K) N	CNTG (\$K) O	FULL (\$K) P
07	POWER PLANT	\$17,700	\$3,717	21.0%	\$21,417	0.0%	\$17,700	\$3,717	\$21,417	\$0	\$21,417	7.8%	\$19,076	\$4,006	\$23,082
	CONSTRUCTION ESTIMATE TOTALS:	\$17,700	\$3,717		\$21,417	0.0%	\$17,700	\$3,717	\$21,417	\$0	\$21,417	7.8%	\$19,076	\$4,006	\$23,082
30	PLANNING, ENGINEERING & DESIGN	\$4,868	\$1,022	21.0%	\$5,890	0.0%	\$4,868	\$1,022	\$5,890	\$0	\$5,890	7.8%	\$5,249	\$1,102	\$6,351
31	CONSTRUCTION MANAGEMENT	\$2,567	\$539	21.0%	\$3,106	0.0%	\$2,567	\$539	\$3,106	\$0	\$3,106	16.1%	\$2,980	\$626	\$3,606
	PROJECT COST TOTALS:	\$25,135	\$5,278	21.0%	\$30,413		\$25,135	\$5,278	\$30,413	\$0	\$30,413	8.6%	\$27,305	\$5,734	\$33,040

CHIEF, COST ENGINEERING, Eileen Horiuchi

ESTIMATED TOTAL PROJECT COST: **\$33,040**

PROJECT MANAGER, Eric Bluhm

CHIEF, REAL ESTATE, Amanda Dethman

CHIEF, PLANNING, Laura Hicks

CHIEF, ENGINEERING, Lance Helwig

CHIEF, OPERATIONS, Dwane Watsek

CHIEF, CONSTRUCTION, Karen Garmire

CHIEF, CONTRACTING, Tracy Wickham

CHIEF, PM-PB, Don Erickson

CHIEF, DPM, Kevin Brice

**** TOTAL PROJECT COST SUMMARY ****

Printed: 5/9/2018
Page 2 of 11

**** CONTRACT COST SUMMARY ****

PROJECT: TDA Fish Unit Rehab_Recommended Alternative
LOCATION: The Dalles Dam
This Estimate reflects the scope and schedule in report;

Phase 1A Report

DISTRICT: Portland District CENWP
POC: CHIEF, COST ENGINEERING, Eileen Horiuchi

PREPARED: 5/8/2018

Civil Works Work Breakdown Structure				ESTIMATED COST				PROJECT FIRST COST (Constant Dollar Basis)				TOTAL PROJECT COST (FULLY FUNDED)			
WBS NUMBER A	Civil Works Feature & Sub-Feature Description B	RISK BASED				Program Year (Budget EC): 2018 Effective Price Level Date: 1 OCT 17				Mid-Point Date P	INFLATED % L	COST (\$K) M	CNTG (\$K) N	FULL (\$K) O	
		COST (\$K) C	CNTG (\$K) D	CNTG (%) E	TOTAL (\$K) F	ESC (%) G	COST (\$K) H	CNTG (\$K) I	TOTAL (\$K) J						
07	PHASE 1 or CONTRACT 1 POWER PLANT	\$17,700	\$3,717	21.0%	\$21,417	0.0%	\$17,700	\$3,717	\$21,417	2021Q4	7.8%	\$19,076	\$4,006	\$23,082	
	CONSTRUCTION ESTIMATE TOTALS:	\$17,700	\$3,717	21.0%	\$21,417		\$17,700	\$3,717	\$21,417			\$19,076	\$4,006	\$23,082	
30	PLANNING, ENGINEERING & DESIGN 2.5% Project Management 1.0% Planning & Environmental Compliance 15.0% Engineering & Design 1.0% Reviews, ATRs, IEPRs, VE 1.0% Life Cycle Updates (cost, schedule, risks) 1.0% Contracting & Reprographics 3.0% Engineering During Construction 2.0% Planning During Construction 1.0% Project Operations	\$443	\$93	21.0%	\$536	0.0%	\$443	\$93	\$536	2019Q3	6.0%	\$470	\$99	\$568	
		\$177	\$37	21.0%	\$214	0.0%	\$177	\$37	\$214	2019Q3	6.0%	\$188	\$39	\$227	
		\$2,655	\$558	21.0%	\$3,213	0.0%	\$2,655	\$558	\$3,213	2019Q3	6.0%	\$2,814	\$591	\$3,405	
		\$177	\$37	21.0%	\$214	0.0%	\$177	\$37	\$214	2019Q3	6.0%	\$188	\$39	\$227	
		\$177	\$37	21.0%	\$214	0.0%	\$177	\$37	\$214	2019Q3	6.0%	\$188	\$39	\$227	
		\$177	\$37	21.0%	\$214	0.0%	\$177	\$37	\$214	2019Q3	6.0%	\$188	\$39	\$227	
		\$531	\$112	21.0%	\$643	0.0%	\$531	\$112	\$643	2021Q4	16.1%	\$617	\$129	\$746	
		\$354	\$74	21.0%	\$428	0.0%	\$354	\$74	\$428	2021Q4	16.1%	\$411	\$86	\$497	
		\$177	\$37	21.0%	\$214	0.0%	\$177	\$37	\$214	2019Q3	6.0%	\$188	\$39	\$227	
31	CONSTRUCTION MANAGEMENT 10.0% Construction Management 2.0% Project Operation: 2.5% Project Management	\$1,770	\$372	21.0%	\$2,142	0.0%	\$1,770	\$372	\$2,142	2021Q4	16.1%	\$2,055	\$432	\$2,487	
		\$354	\$74	21.0%	\$428	0.0%	\$354	\$74	\$428	2021Q4	16.1%	\$411	\$86	\$497	
		\$443	\$93	21.0%	\$536	0.0%	\$443	\$93	\$536	2021Q4	16.1%	\$514	\$108	\$622	
	CONTRACT COST TOTALS:	\$25,135	\$5,278		\$30,413		\$25,135	\$5,278	\$30,413			\$27,305	\$5,734	\$33,040	

**** TOTAL PROJECT COST SUMMARY ****

Printed: 5/9/2018
Page 1 of 11

PROJECT: TDA Fish Unit Rehab_Next Best Alternative
PROJECT NO: 0
LOCATION: The Dalles Dam

DISTRICT: Portland District CENWP
POC: CHIEF, COST ENGINEERING, Eileen Horiuchi

PREPARED: 5/8/2018

This Estimate reflects the scope and schedule in report;

Phase 1A Report

Civil Works Work Breakdown Structure		ESTIMATED COST				PROJECT FIRST COST (Constant Dollar Basis)						TOTAL PROJECT COST (FULLY FUNDED)			
WBS NUMBER A	Civil Works Feature & Sub-Feature Description B	COST (\$K) C	CNTG (\$K) D	CNTG (%) E	TOTAL (\$K) F	ESC (%) G	COST (\$K) H	CNTG (\$K) I	TOTAL (\$K) J	Spent Thru: 1-Oct-17 (\$K) K	TOTAL FIRST COST (\$K) L	Inflated (%) M	COST (\$K) N	CNTG (\$K) O	FULL (\$K) P
07	POWER PLANT	\$15,200	\$3,192	21.0%	\$18,392	0.0%	\$15,200	\$3,192	\$18,392	\$0	\$18,392	6.7%	\$16,219	\$3,406	\$19,625
	CONSTRUCTION ESTIMATE TOTALS:	\$15,200	\$3,192		\$18,392	0.0%	\$15,200	\$3,192	\$18,392	\$0	\$18,392	6.7%	\$16,219	\$3,406	\$19,625
30	PLANNING, ENGINEERING & DESIGN	\$4,180	\$878	21.0%	\$5,058	0.0%	\$4,180	\$878	\$5,058	\$0	\$5,058	7.4%	\$4,490	\$943	\$5,432
31	CONSTRUCTION MANAGEMENT	\$2,204	\$463	21.0%	\$2,667	0.0%	\$2,204	\$463	\$2,667	\$0	\$2,667	13.8%	\$2,508	\$527	\$3,034
	PROJECT COST TOTALS:	\$21,584	\$4,533	21.0%	\$26,117		\$21,584	\$4,533	\$26,117	\$0	\$26,117	7.6%	\$23,216	\$4,875	\$28,091

CHIEF, COST ENGINEERING, Eileen Horiuchi

ESTIMATED TOTAL PROJECT COST: **\$28,091**

PROJECT MANAGER, Eric Bluhm

CHIEF, REAL ESTATE, Amanda Dethman

CHIEF, PLANNING, Laura Hicks

CHIEF, ENGINEERING, Lance Helwig

CHIEF, OPERATIONS, Dwane Watsek

CHIEF, CONSTRUCTION, Karen Garmire

CHIEF, CONTRACTING, Tracy Wickham

CHIEF, PM-PB, Don Erickson

CHIEF, DPM, Kevin Brice

**** TOTAL PROJECT COST SUMMARY ****

Printed: 5/9/2018
Page 2 of 11

**** CONTRACT COST SUMMARY ****

PROJECT: TDA Fish Unit Rehab_Next Best Alternative
LOCATION: The Dalles Dam
This Estimate reflects the scope and schedule in report; Phase 1A Report

DISTRICT: Portland District CENWP
POC: CHIEF, COST ENGINEERING, Eileen Horiuchi

PREPARED: 5/8/2018

Civil Works Work Breakdown Structure				ESTIMATED COST				PROJECT FIRST COST (Constant Dollar Basis)				TOTAL PROJECT COST (FULLY FUNDED)			
WBS NUMBER A	Civil Works Feature & Sub-Feature Description B	RISK BASED				Program Year (Budget EC): 2018 Effective Price Level Date: 1 OCT 17				Mid-Point Date P	INFLATED % L	COST (\$K) M	CNTG (\$K) N	FULL (\$K) O	
		COST (\$K) C	CNTG (\$K) D	CNTG (%) E	TOTAL (\$K) F	ESC (%) G	COST (\$K) H	CNTG (\$K) I	TOTAL (\$K) J						
07	PHASE 1 or CONTRACT 1 POWER PLANT	\$15,200	\$3,192	21.0%	\$18,392	0.0%	\$15,200	\$3,192	\$18,392	2021Q2	6.7%	\$16,219	\$3,406	\$19,625	
	CONSTRUCTION ESTIMATE TOTALS:	\$15,200	\$3,192	21.0%	\$18,392		\$15,200	\$3,192	\$18,392			\$16,219	\$3,406	\$19,625	
30	PLANNING, ENGINEERING & DESIGN 2.5% Project Management 1.0% Planning & Environmental Compliance 15.0% Engineering & Design 1.0% Reviews, ATRs, IEPRs, VE 1.0% Life Cycle Updates (cost, schedule, risks) 1.0% Contracting & Reprographics 3.0% Engineering During Construction 2.0% Planning During Construction 1.0% Project Operations	\$380	\$80	21.0%	\$460	0.0%	\$380	\$80	\$460	2019Q3	6.0%	\$403	\$85	\$487	
		\$152	\$32	21.0%	\$184	0.0%	\$152	\$32	\$184	2019Q3	6.0%	\$161	\$34	\$195	
		\$2,280	\$479	21.0%	\$2,759	0.0%	\$2,280	\$479	\$2,759	2019Q3	6.0%	\$2,417	\$507	\$2,924	
		\$152	\$32	21.0%	\$184	0.0%	\$152	\$32	\$184	2019Q3	6.0%	\$161	\$34	\$195	
		\$152	\$32	21.0%	\$184	0.0%	\$152	\$32	\$184	2019Q3	6.0%	\$161	\$34	\$195	
		\$152	\$32	21.0%	\$184	0.0%	\$152	\$32	\$184	2019Q3	6.0%	\$161	\$34	\$195	
		\$456	\$96	21.0%	\$552	0.0%	\$456	\$96	\$552	2021Q2	13.8%	\$519	\$109	\$628	
		\$304	\$64	21.0%	\$368	0.0%	\$304	\$64	\$368	2021Q2	13.8%	\$346	\$73	\$419	
		\$152	\$32	21.0%	\$184	0.0%	\$152	\$32	\$184	2019Q3	6.0%	\$161	\$34	\$195	
31	CONSTRUCTION MANAGEMENT 10.0% Construction Management 2.0% Project Operation: 2.5% Project Management	\$1,520	\$319	21.0%	\$1,839	0.0%	\$1,520	\$319	\$1,839	2021Q2	13.8%	\$1,729	\$363	\$2,093	
		\$304	\$64	21.0%	\$368	0.0%	\$304	\$64	\$368	2021Q2	13.8%	\$346	\$73	\$419	
		\$380	\$80	21.0%	\$460	0.0%	\$380	\$80	\$460	2021Q2	13.8%	\$432	\$91	\$523	
	CONTRACT COST TOTALS:	\$21,584	\$4,533		\$26,117		\$21,584	\$4,533	\$26,117			\$23,216	\$4,875	\$28,091	